Metamath Proof Explorer


Theorem nosupbnd1lem3

Description: Lemma for nosupbnd1 . If U is a prolongment of S and in A , then ( Udom S ) is not 2o . (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Hypothesis nosupbnd1.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
Assertion nosupbnd1lem3 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 2o )

Proof

Step Hyp Ref Expression
1 nosupbnd1.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
2 1 nosupno ( ( 𝐴 No 𝐴 ∈ V ) → 𝑆 No )
3 2 3ad2ant2 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → 𝑆 No )
4 nodmord ( 𝑆 No → Ord dom 𝑆 )
5 ordirr ( Ord dom 𝑆 → ¬ dom 𝑆 ∈ dom 𝑆 )
6 3 4 5 3syl ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ¬ dom 𝑆 ∈ dom 𝑆 )
7 simpl3l ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → 𝑈𝐴 )
8 ndmfv ( ¬ dom 𝑆 ∈ dom 𝑈 → ( 𝑈 ‘ dom 𝑆 ) = ∅ )
9 2on 2o ∈ On
10 9 elexi 2o ∈ V
11 10 prid2 2o ∈ { 1o , 2o }
12 11 nosgnn0i ∅ ≠ 2o
13 neeq1 ( ( 𝑈 ‘ dom 𝑆 ) = ∅ → ( ( 𝑈 ‘ dom 𝑆 ) ≠ 2o ↔ ∅ ≠ 2o ) )
14 12 13 mpbiri ( ( 𝑈 ‘ dom 𝑆 ) = ∅ → ( 𝑈 ‘ dom 𝑆 ) ≠ 2o )
15 14 neneqd ( ( 𝑈 ‘ dom 𝑆 ) = ∅ → ¬ ( 𝑈 ‘ dom 𝑆 ) = 2o )
16 8 15 syl ( ¬ dom 𝑆 ∈ dom 𝑈 → ¬ ( 𝑈 ‘ dom 𝑆 ) = 2o )
17 16 con4i ( ( 𝑈 ‘ dom 𝑆 ) = 2o → dom 𝑆 ∈ dom 𝑈 )
18 17 adantl ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → dom 𝑆 ∈ dom 𝑈 )
19 simpl2l ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → 𝐴 No )
20 19 adantr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → 𝐴 No )
21 7 adantr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → 𝑈𝐴 )
22 20 21 sseldd ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → 𝑈 No )
23 simprl ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → 𝑞𝐴 )
24 20 23 sseldd ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → 𝑞 No )
25 3 adantr ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → 𝑆 No )
26 25 adantr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → 𝑆 No )
27 nodmon ( 𝑆 No → dom 𝑆 ∈ On )
28 26 27 syl ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → dom 𝑆 ∈ On )
29 simpl3r ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → ( 𝑈 ↾ dom 𝑆 ) = 𝑆 )
30 29 adantr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑈 ↾ dom 𝑆 ) = 𝑆 )
31 simpll1 ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
32 simpll2 ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝐴 No 𝐴 ∈ V ) )
33 simpll3 ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) )
34 simpr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) )
35 1 nosupbnd1lem2 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) ) → ( 𝑞 ↾ dom 𝑆 ) = 𝑆 )
36 31 32 33 34 35 syl112anc ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑞 ↾ dom 𝑆 ) = 𝑆 )
37 30 36 eqtr4d ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑈 ↾ dom 𝑆 ) = ( 𝑞 ↾ dom 𝑆 ) )
38 simplr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑈 ‘ dom 𝑆 ) = 2o )
39 simprr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ¬ 𝑞 <s 𝑈 )
40 nolesgn2ores ( ( ( 𝑈 No 𝑞 No ∧ dom 𝑆 ∈ On ) ∧ ( ( 𝑈 ↾ dom 𝑆 ) = ( 𝑞 ↾ dom 𝑆 ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ¬ 𝑞 <s 𝑈 ) → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) )
41 22 24 28 37 38 39 40 syl321anc ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) )
42 41 expr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ 𝑞𝐴 ) → ( ¬ 𝑞 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) )
43 42 ralrimiva ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) )
44 dmeq ( 𝑝 = 𝑈 → dom 𝑝 = dom 𝑈 )
45 44 eleq2d ( 𝑝 = 𝑈 → ( dom 𝑆 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑈 ) )
46 breq2 ( 𝑝 = 𝑈 → ( 𝑞 <s 𝑝𝑞 <s 𝑈 ) )
47 46 notbid ( 𝑝 = 𝑈 → ( ¬ 𝑞 <s 𝑝 ↔ ¬ 𝑞 <s 𝑈 ) )
48 reseq1 ( 𝑝 = 𝑈 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑈 ↾ suc dom 𝑆 ) )
49 48 eqeq1d ( 𝑝 = 𝑈 → ( ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ↔ ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) )
50 47 49 imbi12d ( 𝑝 = 𝑈 → ( ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ↔ ( ¬ 𝑞 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) )
51 50 ralbidv ( 𝑝 = 𝑈 → ( ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ↔ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) )
52 45 51 anbi12d ( 𝑝 = 𝑈 → ( ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ↔ ( dom 𝑆 ∈ dom 𝑈 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) )
53 52 rspcev ( ( 𝑈𝐴 ∧ ( dom 𝑆 ∈ dom 𝑈 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) → ∃ 𝑝𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) )
54 7 18 43 53 syl12anc ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → ∃ 𝑝𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) )
55 1 nosupdm ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = { 𝑧 ∣ ∃ 𝑝𝐴 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } )
56 55 eleq2d ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ( dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ { 𝑧 ∣ ∃ 𝑝𝐴 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ) )
57 56 3ad2ant1 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ { 𝑧 ∣ ∃ 𝑝𝐴 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ) )
58 eleq1 ( 𝑧 = dom 𝑆 → ( 𝑧 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑝 ) )
59 suceq ( 𝑧 = dom 𝑆 → suc 𝑧 = suc dom 𝑆 )
60 59 reseq2d ( 𝑧 = dom 𝑆 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑝 ↾ suc dom 𝑆 ) )
61 59 reseq2d ( 𝑧 = dom 𝑆 → ( 𝑞 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc dom 𝑆 ) )
62 60 61 eqeq12d ( 𝑧 = dom 𝑆 → ( ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ↔ ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) )
63 62 imbi2d ( 𝑧 = dom 𝑆 → ( ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ↔ ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) )
64 63 ralbidv ( 𝑧 = dom 𝑆 → ( ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ↔ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) )
65 58 64 anbi12d ( 𝑧 = dom 𝑆 → ( ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) ↔ ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) )
66 65 rexbidv ( 𝑧 = dom 𝑆 → ( ∃ 𝑝𝐴 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) ↔ ∃ 𝑝𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) )
67 66 elabg ( dom 𝑆 ∈ On → ( dom 𝑆 ∈ { 𝑧 ∣ ∃ 𝑝𝐴 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ↔ ∃ 𝑝𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) )
68 3 27 67 3syl ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( dom 𝑆 ∈ { 𝑧 ∣ ∃ 𝑝𝐴 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ↔ ∃ 𝑝𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) )
69 57 68 bitrd ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( dom 𝑆 ∈ dom 𝑆 ↔ ∃ 𝑝𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) )
70 69 adantr ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → ( dom 𝑆 ∈ dom 𝑆 ↔ ∃ 𝑝𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) )
71 54 70 mpbird ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → dom 𝑆 ∈ dom 𝑆 )
72 6 71 mtand ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ¬ ( 𝑈 ‘ dom 𝑆 ) = 2o )
73 72 neqned ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 2o )