| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nosupbnd1.1 | ⊢ 𝑆  =  if ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ,  ( ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 )  ∪  { 〈 dom  ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) ,  2o 〉 } ) ,  ( 𝑔  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) }  ↦  ( ℩ 𝑥 ∃ 𝑢  ∈  𝐴 ( 𝑔  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑔 )  =  ( 𝑣  ↾  suc  𝑔 ) )  ∧  ( 𝑢 ‘ 𝑔 )  =  𝑥 ) ) ) ) | 
						
							| 2 | 1 | nosupno | ⊢ ( ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  →  𝑆  ∈   No  ) | 
						
							| 3 | 2 | 3ad2ant2 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  𝑆  ∈   No  ) | 
						
							| 4 |  | nodmord | ⊢ ( 𝑆  ∈   No   →  Ord  dom  𝑆 ) | 
						
							| 5 |  | ordirr | ⊢ ( Ord  dom  𝑆  →  ¬  dom  𝑆  ∈  dom  𝑆 ) | 
						
							| 6 | 3 4 5 | 3syl | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ¬  dom  𝑆  ∈  dom  𝑆 ) | 
						
							| 7 |  | simpl3l | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  →  𝑈  ∈  𝐴 ) | 
						
							| 8 |  | ndmfv | ⊢ ( ¬  dom  𝑆  ∈  dom  𝑈  →  ( 𝑈 ‘ dom  𝑆 )  =  ∅ ) | 
						
							| 9 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 10 | 9 | elexi | ⊢ 2o  ∈  V | 
						
							| 11 | 10 | prid2 | ⊢ 2o  ∈  { 1o ,  2o } | 
						
							| 12 | 11 | nosgnn0i | ⊢ ∅  ≠  2o | 
						
							| 13 |  | neeq1 | ⊢ ( ( 𝑈 ‘ dom  𝑆 )  =  ∅  →  ( ( 𝑈 ‘ dom  𝑆 )  ≠  2o  ↔  ∅  ≠  2o ) ) | 
						
							| 14 | 12 13 | mpbiri | ⊢ ( ( 𝑈 ‘ dom  𝑆 )  =  ∅  →  ( 𝑈 ‘ dom  𝑆 )  ≠  2o ) | 
						
							| 15 | 14 | neneqd | ⊢ ( ( 𝑈 ‘ dom  𝑆 )  =  ∅  →  ¬  ( 𝑈 ‘ dom  𝑆 )  =  2o ) | 
						
							| 16 | 8 15 | syl | ⊢ ( ¬  dom  𝑆  ∈  dom  𝑈  →  ¬  ( 𝑈 ‘ dom  𝑆 )  =  2o ) | 
						
							| 17 | 16 | con4i | ⊢ ( ( 𝑈 ‘ dom  𝑆 )  =  2o  →  dom  𝑆  ∈  dom  𝑈 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  →  dom  𝑆  ∈  dom  𝑈 ) | 
						
							| 19 |  | simpl2l | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  →  𝐴  ⊆   No  ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  𝐴  ⊆   No  ) | 
						
							| 21 | 7 | adantr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  𝑈  ∈  𝐴 ) | 
						
							| 22 | 20 21 | sseldd | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  𝑈  ∈   No  ) | 
						
							| 23 |  | simprl | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  𝑞  ∈  𝐴 ) | 
						
							| 24 | 20 23 | sseldd | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  𝑞  ∈   No  ) | 
						
							| 25 | 3 | adantr | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  →  𝑆  ∈   No  ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  𝑆  ∈   No  ) | 
						
							| 27 |  | nodmon | ⊢ ( 𝑆  ∈   No   →  dom  𝑆  ∈  On ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  dom  𝑆  ∈  On ) | 
						
							| 29 |  | simpl3r | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  →  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 31 |  | simpll1 | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) | 
						
							| 32 |  | simpll2 | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V ) ) | 
						
							| 33 |  | simpll3 | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) ) | 
						
							| 35 | 1 | nosupbnd1lem2 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) ) )  →  ( 𝑞  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 36 | 31 32 33 34 35 | syl112anc | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  ( 𝑞  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 37 | 30 36 | eqtr4d | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  ( 𝑈  ↾  dom  𝑆 )  =  ( 𝑞  ↾  dom  𝑆 ) ) | 
						
							| 38 |  | simplr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  ( 𝑈 ‘ dom  𝑆 )  =  2o ) | 
						
							| 39 |  | simprr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  ¬  𝑞  <s  𝑈 ) | 
						
							| 40 |  | nolesgn2ores | ⊢ ( ( ( 𝑈  ∈   No   ∧  𝑞  ∈   No   ∧  dom  𝑆  ∈  On )  ∧  ( ( 𝑈  ↾  dom  𝑆 )  =  ( 𝑞  ↾  dom  𝑆 )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ¬  𝑞  <s  𝑈 )  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) | 
						
							| 41 | 22 24 28 37 38 39 40 | syl321anc | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  ( 𝑞  ∈  𝐴  ∧  ¬  𝑞  <s  𝑈 ) )  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) | 
						
							| 42 | 41 | expr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  ∧  𝑞  ∈  𝐴 )  →  ( ¬  𝑞  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) | 
						
							| 43 | 42 | ralrimiva | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  →  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) | 
						
							| 44 |  | dmeq | ⊢ ( 𝑝  =  𝑈  →  dom  𝑝  =  dom  𝑈 ) | 
						
							| 45 | 44 | eleq2d | ⊢ ( 𝑝  =  𝑈  →  ( dom  𝑆  ∈  dom  𝑝  ↔  dom  𝑆  ∈  dom  𝑈 ) ) | 
						
							| 46 |  | breq2 | ⊢ ( 𝑝  =  𝑈  →  ( 𝑞  <s  𝑝  ↔  𝑞  <s  𝑈 ) ) | 
						
							| 47 | 46 | notbid | ⊢ ( 𝑝  =  𝑈  →  ( ¬  𝑞  <s  𝑝  ↔  ¬  𝑞  <s  𝑈 ) ) | 
						
							| 48 |  | reseq1 | ⊢ ( 𝑝  =  𝑈  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑈  ↾  suc  dom  𝑆 ) ) | 
						
							| 49 | 48 | eqeq1d | ⊢ ( 𝑝  =  𝑈  →  ( ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 )  ↔  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) | 
						
							| 50 | 47 49 | imbi12d | ⊢ ( 𝑝  =  𝑈  →  ( ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) )  ↔  ( ¬  𝑞  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 51 | 50 | ralbidv | ⊢ ( 𝑝  =  𝑈  →  ( ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) )  ↔  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 52 | 45 51 | anbi12d | ⊢ ( 𝑝  =  𝑈  →  ( ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) )  ↔  ( dom  𝑆  ∈  dom  𝑈  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) ) ) | 
						
							| 53 | 52 | rspcev | ⊢ ( ( 𝑈  ∈  𝐴  ∧  ( dom  𝑆  ∈  dom  𝑈  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) )  →  ∃ 𝑝  ∈  𝐴 ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 54 | 7 18 43 53 | syl12anc | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  →  ∃ 𝑝  ∈  𝐴 ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 55 | 1 | nosupdm | ⊢ ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  →  dom  𝑆  =  { 𝑧  ∣  ∃ 𝑝  ∈  𝐴 ( 𝑧  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  𝑧 )  =  ( 𝑞  ↾  suc  𝑧 ) ) ) } ) | 
						
							| 56 | 55 | eleq2d | ⊢ ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  →  ( dom  𝑆  ∈  dom  𝑆  ↔  dom  𝑆  ∈  { 𝑧  ∣  ∃ 𝑝  ∈  𝐴 ( 𝑧  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  𝑧 )  =  ( 𝑞  ↾  suc  𝑧 ) ) ) } ) ) | 
						
							| 57 | 56 | 3ad2ant1 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( dom  𝑆  ∈  dom  𝑆  ↔  dom  𝑆  ∈  { 𝑧  ∣  ∃ 𝑝  ∈  𝐴 ( 𝑧  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  𝑧 )  =  ( 𝑞  ↾  suc  𝑧 ) ) ) } ) ) | 
						
							| 58 |  | eleq1 | ⊢ ( 𝑧  =  dom  𝑆  →  ( 𝑧  ∈  dom  𝑝  ↔  dom  𝑆  ∈  dom  𝑝 ) ) | 
						
							| 59 |  | suceq | ⊢ ( 𝑧  =  dom  𝑆  →  suc  𝑧  =  suc  dom  𝑆 ) | 
						
							| 60 | 59 | reseq2d | ⊢ ( 𝑧  =  dom  𝑆  →  ( 𝑝  ↾  suc  𝑧 )  =  ( 𝑝  ↾  suc  dom  𝑆 ) ) | 
						
							| 61 | 59 | reseq2d | ⊢ ( 𝑧  =  dom  𝑆  →  ( 𝑞  ↾  suc  𝑧 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) | 
						
							| 62 | 60 61 | eqeq12d | ⊢ ( 𝑧  =  dom  𝑆  →  ( ( 𝑝  ↾  suc  𝑧 )  =  ( 𝑞  ↾  suc  𝑧 )  ↔  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) | 
						
							| 63 | 62 | imbi2d | ⊢ ( 𝑧  =  dom  𝑆  →  ( ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  𝑧 )  =  ( 𝑞  ↾  suc  𝑧 ) )  ↔  ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 64 | 63 | ralbidv | ⊢ ( 𝑧  =  dom  𝑆  →  ( ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  𝑧 )  =  ( 𝑞  ↾  suc  𝑧 ) )  ↔  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 65 | 58 64 | anbi12d | ⊢ ( 𝑧  =  dom  𝑆  →  ( ( 𝑧  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  𝑧 )  =  ( 𝑞  ↾  suc  𝑧 ) ) )  ↔  ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) ) ) | 
						
							| 66 | 65 | rexbidv | ⊢ ( 𝑧  =  dom  𝑆  →  ( ∃ 𝑝  ∈  𝐴 ( 𝑧  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  𝑧 )  =  ( 𝑞  ↾  suc  𝑧 ) ) )  ↔  ∃ 𝑝  ∈  𝐴 ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) ) ) | 
						
							| 67 | 66 | elabg | ⊢ ( dom  𝑆  ∈  On  →  ( dom  𝑆  ∈  { 𝑧  ∣  ∃ 𝑝  ∈  𝐴 ( 𝑧  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  𝑧 )  =  ( 𝑞  ↾  suc  𝑧 ) ) ) }  ↔  ∃ 𝑝  ∈  𝐴 ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) ) ) | 
						
							| 68 | 3 27 67 | 3syl | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( dom  𝑆  ∈  { 𝑧  ∣  ∃ 𝑝  ∈  𝐴 ( 𝑧  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  𝑧 )  =  ( 𝑞  ↾  suc  𝑧 ) ) ) }  ↔  ∃ 𝑝  ∈  𝐴 ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) ) ) | 
						
							| 69 | 57 68 | bitrd | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( dom  𝑆  ∈  dom  𝑆  ↔  ∃ 𝑝  ∈  𝐴 ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  →  ( dom  𝑆  ∈  dom  𝑆  ↔  ∃ 𝑝  ∈  𝐴 ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑞  ∈  𝐴 ( ¬  𝑞  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑞  ↾  suc  dom  𝑆 ) ) ) ) ) | 
						
							| 71 | 54 70 | mpbird | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  2o )  →  dom  𝑆  ∈  dom  𝑆 ) | 
						
							| 72 | 6 71 | mtand | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ¬  ( 𝑈 ‘ dom  𝑆 )  =  2o ) | 
						
							| 73 | 72 | neqned | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( 𝑈 ‘ dom  𝑆 )  ≠  2o ) |