Step |
Hyp |
Ref |
Expression |
1 |
|
nosupbnd1.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
simp3rr |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ¬ 𝑊 <s 𝑈 ) |
3 |
|
simp2l |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → 𝐴 ⊆ No ) |
4 |
|
simp3rl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → 𝑊 ∈ 𝐴 ) |
5 |
3 4
|
sseldd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → 𝑊 ∈ No ) |
6 |
|
simp3ll |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → 𝑈 ∈ 𝐴 ) |
7 |
3 6
|
sseldd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → 𝑈 ∈ No ) |
8 |
1
|
nosupno |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → 𝑆 ∈ No ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → 𝑆 ∈ No ) |
10 |
|
nodmon |
⊢ ( 𝑆 ∈ No → dom 𝑆 ∈ On ) |
11 |
9 10
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → dom 𝑆 ∈ On ) |
12 |
|
sltres |
⊢ ( ( 𝑊 ∈ No ∧ 𝑈 ∈ No ∧ dom 𝑆 ∈ On ) → ( ( 𝑊 ↾ dom 𝑆 ) <s ( 𝑈 ↾ dom 𝑆 ) → 𝑊 <s 𝑈 ) ) |
13 |
5 7 11 12
|
syl3anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ( ( 𝑊 ↾ dom 𝑆 ) <s ( 𝑈 ↾ dom 𝑆 ) → 𝑊 <s 𝑈 ) ) |
14 |
2 13
|
mtod |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ¬ ( 𝑊 ↾ dom 𝑆 ) <s ( 𝑈 ↾ dom 𝑆 ) ) |
15 |
|
simp3lr |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) |
16 |
15
|
breq2d |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ( ( 𝑊 ↾ dom 𝑆 ) <s ( 𝑈 ↾ dom 𝑆 ) ↔ ( 𝑊 ↾ dom 𝑆 ) <s 𝑆 ) ) |
17 |
14 16
|
mtbid |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ¬ ( 𝑊 ↾ dom 𝑆 ) <s 𝑆 ) |
18 |
1
|
nosupbnd1lem1 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ 𝑊 ∈ 𝐴 ) → ¬ 𝑆 <s ( 𝑊 ↾ dom 𝑆 ) ) |
19 |
4 18
|
syld3an3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ¬ 𝑆 <s ( 𝑊 ↾ dom 𝑆 ) ) |
20 |
|
noreson |
⊢ ( ( 𝑊 ∈ No ∧ dom 𝑆 ∈ On ) → ( 𝑊 ↾ dom 𝑆 ) ∈ No ) |
21 |
5 11 20
|
syl2anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ( 𝑊 ↾ dom 𝑆 ) ∈ No ) |
22 |
|
sltso |
⊢ <s Or No |
23 |
|
sotrieq2 |
⊢ ( ( <s Or No ∧ ( ( 𝑊 ↾ dom 𝑆 ) ∈ No ∧ 𝑆 ∈ No ) ) → ( ( 𝑊 ↾ dom 𝑆 ) = 𝑆 ↔ ( ¬ ( 𝑊 ↾ dom 𝑆 ) <s 𝑆 ∧ ¬ 𝑆 <s ( 𝑊 ↾ dom 𝑆 ) ) ) ) |
24 |
22 23
|
mpan |
⊢ ( ( ( 𝑊 ↾ dom 𝑆 ) ∈ No ∧ 𝑆 ∈ No ) → ( ( 𝑊 ↾ dom 𝑆 ) = 𝑆 ↔ ( ¬ ( 𝑊 ↾ dom 𝑆 ) <s 𝑆 ∧ ¬ 𝑆 <s ( 𝑊 ↾ dom 𝑆 ) ) ) ) |
25 |
21 9 24
|
syl2anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ( ( 𝑊 ↾ dom 𝑆 ) = 𝑆 ↔ ( ¬ ( 𝑊 ↾ dom 𝑆 ) <s 𝑆 ∧ ¬ 𝑆 <s ( 𝑊 ↾ dom 𝑆 ) ) ) ) |
26 |
17 19 25
|
mpbir2and |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ( 𝑊 ↾ dom 𝑆 ) = 𝑆 ) |