Metamath Proof Explorer


Theorem nosupbnd1lem2

Description: Lemma for nosupbnd1 . When there is no maximum, if any member of A is a prolongment of S , then so are all elements of A above it. (Contributed by Scott Fenton, 5-Dec-2021)

Ref Expression
Hypothesis nosupbnd1.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
Assertion nosupbnd1lem2 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ( 𝑊 ↾ dom 𝑆 ) = 𝑆 )

Proof

Step Hyp Ref Expression
1 nosupbnd1.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
2 simp3rr ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ¬ 𝑊 <s 𝑈 )
3 simp2l ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → 𝐴 No )
4 simp3rl ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → 𝑊𝐴 )
5 3 4 sseldd ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → 𝑊 No )
6 simp3ll ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → 𝑈𝐴 )
7 3 6 sseldd ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → 𝑈 No )
8 1 nosupno ( ( 𝐴 No 𝐴 ∈ V ) → 𝑆 No )
9 8 3ad2ant2 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → 𝑆 No )
10 nodmon ( 𝑆 No → dom 𝑆 ∈ On )
11 9 10 syl ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → dom 𝑆 ∈ On )
12 sltres ( ( 𝑊 No 𝑈 No ∧ dom 𝑆 ∈ On ) → ( ( 𝑊 ↾ dom 𝑆 ) <s ( 𝑈 ↾ dom 𝑆 ) → 𝑊 <s 𝑈 ) )
13 5 7 11 12 syl3anc ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ( ( 𝑊 ↾ dom 𝑆 ) <s ( 𝑈 ↾ dom 𝑆 ) → 𝑊 <s 𝑈 ) )
14 2 13 mtod ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ¬ ( 𝑊 ↾ dom 𝑆 ) <s ( 𝑈 ↾ dom 𝑆 ) )
15 simp3lr ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ( 𝑈 ↾ dom 𝑆 ) = 𝑆 )
16 15 breq2d ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ( ( 𝑊 ↾ dom 𝑆 ) <s ( 𝑈 ↾ dom 𝑆 ) ↔ ( 𝑊 ↾ dom 𝑆 ) <s 𝑆 ) )
17 14 16 mtbid ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ¬ ( 𝑊 ↾ dom 𝑆 ) <s 𝑆 )
18 1 nosupbnd1lem1 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ 𝑊𝐴 ) → ¬ 𝑆 <s ( 𝑊 ↾ dom 𝑆 ) )
19 4 18 syld3an3 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ¬ 𝑆 <s ( 𝑊 ↾ dom 𝑆 ) )
20 noreson ( ( 𝑊 No ∧ dom 𝑆 ∈ On ) → ( 𝑊 ↾ dom 𝑆 ) ∈ No )
21 5 11 20 syl2anc ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ( 𝑊 ↾ dom 𝑆 ) ∈ No )
22 sltso <s Or No
23 sotrieq2 ( ( <s Or No ∧ ( ( 𝑊 ↾ dom 𝑆 ) ∈ No 𝑆 No ) ) → ( ( 𝑊 ↾ dom 𝑆 ) = 𝑆 ↔ ( ¬ ( 𝑊 ↾ dom 𝑆 ) <s 𝑆 ∧ ¬ 𝑆 <s ( 𝑊 ↾ dom 𝑆 ) ) ) )
24 22 23 mpan ( ( ( 𝑊 ↾ dom 𝑆 ) ∈ No 𝑆 No ) → ( ( 𝑊 ↾ dom 𝑆 ) = 𝑆 ↔ ( ¬ ( 𝑊 ↾ dom 𝑆 ) <s 𝑆 ∧ ¬ 𝑆 <s ( 𝑊 ↾ dom 𝑆 ) ) ) )
25 21 9 24 syl2anc ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ( ( 𝑊 ↾ dom 𝑆 ) = 𝑆 ↔ ( ¬ ( 𝑊 ↾ dom 𝑆 ) <s 𝑆 ∧ ¬ 𝑆 <s ( 𝑊 ↾ dom 𝑆 ) ) ) )
26 17 19 25 mpbir2and ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈 ) ) ) → ( 𝑊 ↾ dom 𝑆 ) = 𝑆 )