| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nosupbnd1.1 | ⊢ 𝑆  =  if ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ,  ( ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 )  ∪  { 〈 dom  ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) ,  2o 〉 } ) ,  ( 𝑔  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) }  ↦  ( ℩ 𝑥 ∃ 𝑢  ∈  𝐴 ( 𝑔  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑔 )  =  ( 𝑣  ↾  suc  𝑔 ) )  ∧  ( 𝑢 ‘ 𝑔 )  =  𝑥 ) ) ) ) | 
						
							| 2 |  | simp3rr | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  ¬  𝑊  <s  𝑈 ) | 
						
							| 3 |  | simp2l | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  𝐴  ⊆   No  ) | 
						
							| 4 |  | simp3rl | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  𝑊  ∈  𝐴 ) | 
						
							| 5 | 3 4 | sseldd | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  𝑊  ∈   No  ) | 
						
							| 6 |  | simp3ll | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  𝑈  ∈  𝐴 ) | 
						
							| 7 | 3 6 | sseldd | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  𝑈  ∈   No  ) | 
						
							| 8 | 1 | nosupno | ⊢ ( ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  →  𝑆  ∈   No  ) | 
						
							| 9 | 8 | 3ad2ant2 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  𝑆  ∈   No  ) | 
						
							| 10 |  | nodmon | ⊢ ( 𝑆  ∈   No   →  dom  𝑆  ∈  On ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  dom  𝑆  ∈  On ) | 
						
							| 12 |  | sltres | ⊢ ( ( 𝑊  ∈   No   ∧  𝑈  ∈   No   ∧  dom  𝑆  ∈  On )  →  ( ( 𝑊  ↾  dom  𝑆 )  <s  ( 𝑈  ↾  dom  𝑆 )  →  𝑊  <s  𝑈 ) ) | 
						
							| 13 | 5 7 11 12 | syl3anc | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  ( ( 𝑊  ↾  dom  𝑆 )  <s  ( 𝑈  ↾  dom  𝑆 )  →  𝑊  <s  𝑈 ) ) | 
						
							| 14 | 2 13 | mtod | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  ¬  ( 𝑊  ↾  dom  𝑆 )  <s  ( 𝑈  ↾  dom  𝑆 ) ) | 
						
							| 15 |  | simp3lr | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 16 | 15 | breq2d | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  ( ( 𝑊  ↾  dom  𝑆 )  <s  ( 𝑈  ↾  dom  𝑆 )  ↔  ( 𝑊  ↾  dom  𝑆 )  <s  𝑆 ) ) | 
						
							| 17 | 14 16 | mtbid | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  ¬  ( 𝑊  ↾  dom  𝑆 )  <s  𝑆 ) | 
						
							| 18 | 1 | nosupbnd1lem1 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑊  ∈  𝐴 )  →  ¬  𝑆  <s  ( 𝑊  ↾  dom  𝑆 ) ) | 
						
							| 19 | 4 18 | syld3an3 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  ¬  𝑆  <s  ( 𝑊  ↾  dom  𝑆 ) ) | 
						
							| 20 |  | noreson | ⊢ ( ( 𝑊  ∈   No   ∧  dom  𝑆  ∈  On )  →  ( 𝑊  ↾  dom  𝑆 )  ∈   No  ) | 
						
							| 21 | 5 11 20 | syl2anc | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  ( 𝑊  ↾  dom  𝑆 )  ∈   No  ) | 
						
							| 22 |  | sltso | ⊢  <s   Or   No | 
						
							| 23 |  | sotrieq2 | ⊢ ( (  <s   Or   No   ∧  ( ( 𝑊  ↾  dom  𝑆 )  ∈   No   ∧  𝑆  ∈   No  ) )  →  ( ( 𝑊  ↾  dom  𝑆 )  =  𝑆  ↔  ( ¬  ( 𝑊  ↾  dom  𝑆 )  <s  𝑆  ∧  ¬  𝑆  <s  ( 𝑊  ↾  dom  𝑆 ) ) ) ) | 
						
							| 24 | 22 23 | mpan | ⊢ ( ( ( 𝑊  ↾  dom  𝑆 )  ∈   No   ∧  𝑆  ∈   No  )  →  ( ( 𝑊  ↾  dom  𝑆 )  =  𝑆  ↔  ( ¬  ( 𝑊  ↾  dom  𝑆 )  <s  𝑆  ∧  ¬  𝑆  <s  ( 𝑊  ↾  dom  𝑆 ) ) ) ) | 
						
							| 25 | 21 9 24 | syl2anc | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  ( ( 𝑊  ↾  dom  𝑆 )  =  𝑆  ↔  ( ¬  ( 𝑊  ↾  dom  𝑆 )  <s  𝑆  ∧  ¬  𝑆  <s  ( 𝑊  ↾  dom  𝑆 ) ) ) ) | 
						
							| 26 | 17 19 25 | mpbir2and | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑊  ∈  𝐴  ∧  ¬  𝑊  <s  𝑈 ) ) )  →  ( 𝑊  ↾  dom  𝑆 )  =  𝑆 ) |