Metamath Proof Explorer


Theorem nosupbnd1lem2

Description: Lemma for nosupbnd1 . When there is no maximum, if any member of A is a prolongment of S , then so are all elements of A above it. (Contributed by Scott Fenton, 5-Dec-2021)

Ref Expression
Hypothesis nosupbnd1.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
Assertion nosupbnd1lem2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U W dom S = S

Proof

Step Hyp Ref Expression
1 nosupbnd1.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
2 simp3rr ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U ¬ W < s U
3 simp2l ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U A No
4 simp3rl ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U W A
5 3 4 sseldd ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U W No
6 simp3ll ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U U A
7 3 6 sseldd ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U U No
8 1 nosupno A No A V S No
9 8 3ad2ant2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U S No
10 nodmon S No dom S On
11 9 10 syl ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U dom S On
12 sltres W No U No dom S On W dom S < s U dom S W < s U
13 5 7 11 12 syl3anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U W dom S < s U dom S W < s U
14 2 13 mtod ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U ¬ W dom S < s U dom S
15 simp3lr ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U U dom S = S
16 15 breq2d ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U W dom S < s U dom S W dom S < s S
17 14 16 mtbid ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U ¬ W dom S < s S
18 1 nosupbnd1lem1 ¬ x A y A ¬ x < s y A No A V W A ¬ S < s W dom S
19 4 18 syld3an3 ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U ¬ S < s W dom S
20 noreson W No dom S On W dom S No
21 5 11 20 syl2anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U W dom S No
22 sltso < s Or No
23 sotrieq2 < s Or No W dom S No S No W dom S = S ¬ W dom S < s S ¬ S < s W dom S
24 22 23 mpan W dom S No S No W dom S = S ¬ W dom S < s S ¬ S < s W dom S
25 21 9 24 syl2anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U W dom S = S ¬ W dom S < s S ¬ S < s W dom S
26 17 19 25 mpbir2and ¬ x A y A ¬ x < s y A No A V U A U dom S = S W A ¬ W < s U W dom S = S