Step |
Hyp |
Ref |
Expression |
1 |
|
nosupbnd1.1 |
ā¢ š = if ( ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ , ( ( ā© š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ) āŖ { āØ dom ( ā© š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ) , 2o ā© } ) , ( š ā { š¦ ā£ ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) } ā¦ ( ā© š„ ā š¢ ā š“ ( š ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š ) = ( š£ ā¾ suc š ) ) ā§ ( š¢ ā š ) = š„ ) ) ) ) |
2 |
|
simp2l |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā š“ ā No ) |
3 |
|
simp3 |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā š ā š“ ) |
4 |
2 3
|
sseldd |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā š ā No ) |
5 |
1
|
nosupno |
ā¢ ( ( š“ ā No ā§ š“ ā V ) ā š ā No ) |
6 |
5
|
3ad2ant2 |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā š ā No ) |
7 |
|
nodmon |
ā¢ ( š ā No ā dom š ā On ) |
8 |
6 7
|
syl |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā dom š ā On ) |
9 |
|
noreson |
ā¢ ( ( š ā No ā§ dom š ā On ) ā ( š ā¾ dom š ) ā No ) |
10 |
4 8 9
|
syl2anc |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā ( š ā¾ dom š ) ā No ) |
11 |
|
dmres |
ā¢ dom ( š ā¾ dom š ) = ( dom š ā© dom š ) |
12 |
|
inss1 |
ā¢ ( dom š ā© dom š ) ā dom š |
13 |
11 12
|
eqsstri |
ā¢ dom ( š ā¾ dom š ) ā dom š |
14 |
13
|
a1i |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā dom ( š ā¾ dom š ) ā dom š ) |
15 |
|
ssidd |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā dom š ā dom š ) |
16 |
|
iffalse |
ā¢ ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā if ( ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ , ( ( ā© š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ) āŖ { āØ dom ( ā© š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ) , 2o ā© } ) , ( š ā { š¦ ā£ ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) } ā¦ ( ā© š„ ā š¢ ā š“ ( š ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š ) = ( š£ ā¾ suc š ) ) ā§ ( š¢ ā š ) = š„ ) ) ) ) = ( š ā { š¦ ā£ ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) } ā¦ ( ā© š„ ā š¢ ā š“ ( š ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š ) = ( š£ ā¾ suc š ) ) ā§ ( š¢ ā š ) = š„ ) ) ) ) |
17 |
1 16
|
eqtrid |
ā¢ ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā š = ( š ā { š¦ ā£ ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) } ā¦ ( ā© š„ ā š¢ ā š“ ( š ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š ) = ( š£ ā¾ suc š ) ) ā§ ( š¢ ā š ) = š„ ) ) ) ) |
18 |
17
|
dmeqd |
ā¢ ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā dom š = dom ( š ā { š¦ ā£ ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) } ā¦ ( ā© š„ ā š¢ ā š“ ( š ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š ) = ( š£ ā¾ suc š ) ) ā§ ( š¢ ā š ) = š„ ) ) ) ) |
19 |
|
iotaex |
ā¢ ( ā© š„ ā š¢ ā š“ ( š ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š ) = ( š£ ā¾ suc š ) ) ā§ ( š¢ ā š ) = š„ ) ) ā V |
20 |
|
eqid |
ā¢ ( š ā { š¦ ā£ ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) } ā¦ ( ā© š„ ā š¢ ā š“ ( š ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š ) = ( š£ ā¾ suc š ) ) ā§ ( š¢ ā š ) = š„ ) ) ) = ( š ā { š¦ ā£ ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) } ā¦ ( ā© š„ ā š¢ ā š“ ( š ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š ) = ( š£ ā¾ suc š ) ) ā§ ( š¢ ā š ) = š„ ) ) ) |
21 |
19 20
|
dmmpti |
ā¢ dom ( š ā { š¦ ā£ ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) } ā¦ ( ā© š„ ā š¢ ā š“ ( š ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š ) = ( š£ ā¾ suc š ) ) ā§ ( š¢ ā š ) = š„ ) ) ) = { š¦ ā£ ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) } |
22 |
18 21
|
eqtrdi |
ā¢ ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā dom š = { š¦ ā£ ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) } ) |
23 |
22
|
eleq2d |
ā¢ ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā ( ā ā dom š ā ā ā { š¦ ā£ ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) } ) ) |
24 |
|
vex |
ā¢ ā ā V |
25 |
|
eleq1w |
ā¢ ( š¦ = ā ā ( š¦ ā dom š¢ ā ā ā dom š¢ ) ) |
26 |
|
suceq |
ā¢ ( š¦ = ā ā suc š¦ = suc ā ) |
27 |
26
|
reseq2d |
ā¢ ( š¦ = ā ā ( š¢ ā¾ suc š¦ ) = ( š¢ ā¾ suc ā ) ) |
28 |
26
|
reseq2d |
ā¢ ( š¦ = ā ā ( š£ ā¾ suc š¦ ) = ( š£ ā¾ suc ā ) ) |
29 |
27 28
|
eqeq12d |
ā¢ ( š¦ = ā ā ( ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ā ( š¢ ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) |
30 |
29
|
imbi2d |
ā¢ ( š¦ = ā ā ( ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ā ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) |
31 |
30
|
ralbidv |
ā¢ ( š¦ = ā ā ( ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ā ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) |
32 |
25 31
|
anbi12d |
ā¢ ( š¦ = ā ā ( ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) ā ( ā ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) |
33 |
32
|
rexbidv |
ā¢ ( š¦ = ā ā ( ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) ā ā š¢ ā š“ ( ā ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) |
34 |
|
dmeq |
ā¢ ( š¢ = š ā dom š¢ = dom š ) |
35 |
34
|
eleq2d |
ā¢ ( š¢ = š ā ( ā ā dom š¢ ā ā ā dom š ) ) |
36 |
|
breq2 |
ā¢ ( š¢ = š ā ( š£ <s š¢ ā š£ <s š ) ) |
37 |
36
|
notbid |
ā¢ ( š¢ = š ā ( Ā¬ š£ <s š¢ ā Ā¬ š£ <s š ) ) |
38 |
|
reseq1 |
ā¢ ( š¢ = š ā ( š¢ ā¾ suc ā ) = ( š ā¾ suc ā ) ) |
39 |
38
|
eqeq1d |
ā¢ ( š¢ = š ā ( ( š¢ ā¾ suc ā ) = ( š£ ā¾ suc ā ) ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) |
40 |
37 39
|
imbi12d |
ā¢ ( š¢ = š ā ( ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ā ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) |
41 |
40
|
ralbidv |
ā¢ ( š¢ = š ā ( ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ā ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) |
42 |
35 41
|
anbi12d |
ā¢ ( š¢ = š ā ( ( ā ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ā ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) |
43 |
42
|
cbvrexvw |
ā¢ ( ā š¢ ā š“ ( ā ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ā ā š ā š“ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) |
44 |
33 43
|
bitrdi |
ā¢ ( š¦ = ā ā ( ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) ā ā š ā š“ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) |
45 |
24 44
|
elab |
ā¢ ( ā ā { š¦ ā£ ā š¢ ā š“ ( š¦ ā dom š¢ ā§ ā š£ ā š“ ( Ā¬ š£ <s š¢ ā ( š¢ ā¾ suc š¦ ) = ( š£ ā¾ suc š¦ ) ) ) } ā ā š ā š“ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) |
46 |
23 45
|
bitrdi |
ā¢ ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā ( ā ā dom š ā ā š ā š“ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) |
47 |
46
|
3ad2ant1 |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā ( ā ā dom š ā ā š ā š“ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) |
48 |
|
simpl1 |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ) |
49 |
|
simpl2 |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā ( š“ ā No ā§ š“ ā V ) ) |
50 |
|
simprl |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā š ā š“ ) |
51 |
|
simprrl |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā ā ā dom š ) |
52 |
|
simprrr |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) |
53 |
1
|
nosupres |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ ( š ā š“ ā§ ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ā ( š ā¾ suc ā ) = ( š ā¾ suc ā ) ) |
54 |
48 49 50 51 52 53
|
syl113anc |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā ( š ā¾ suc ā ) = ( š ā¾ suc ā ) ) |
55 |
|
simpl2l |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā š“ ā No ) |
56 |
55 50
|
sseldd |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā š ā No ) |
57 |
4
|
adantr |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā š ā No ) |
58 |
|
sltso |
ā¢ <s Or No |
59 |
|
soasym |
ā¢ ( ( <s Or No ā§ ( š ā No ā§ š ā No ) ) ā ( š <s š ā Ā¬ š <s š ) ) |
60 |
58 59
|
mpan |
ā¢ ( ( š ā No ā§ š ā No ) ā ( š <s š ā Ā¬ š <s š ) ) |
61 |
56 57 60
|
syl2anc |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā ( š <s š ā Ā¬ š <s š ) ) |
62 |
|
simpl3 |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā š ā š“ ) |
63 |
|
breq1 |
ā¢ ( š£ = š ā ( š£ <s š ā š <s š ) ) |
64 |
63
|
notbid |
ā¢ ( š£ = š ā ( Ā¬ š£ <s š ā Ā¬ š <s š ) ) |
65 |
|
reseq1 |
ā¢ ( š£ = š ā ( š£ ā¾ suc ā ) = ( š ā¾ suc ā ) ) |
66 |
65
|
eqeq2d |
ā¢ ( š£ = š ā ( ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ā ( š ā¾ suc ā ) = ( š ā¾ suc ā ) ) ) |
67 |
64 66
|
imbi12d |
ā¢ ( š£ = š ā ( ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ā ( Ā¬ š <s š ā ( š ā¾ suc ā ) = ( š ā¾ suc ā ) ) ) ) |
68 |
67
|
rspcv |
ā¢ ( š ā š“ ā ( ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ā ( Ā¬ š <s š ā ( š ā¾ suc ā ) = ( š ā¾ suc ā ) ) ) ) |
69 |
62 52 68
|
sylc |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā ( Ā¬ š <s š ā ( š ā¾ suc ā ) = ( š ā¾ suc ā ) ) ) |
70 |
61 69
|
syld |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā ( š <s š ā ( š ā¾ suc ā ) = ( š ā¾ suc ā ) ) ) |
71 |
70
|
imp |
ā¢ ( ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā§ š <s š ) ā ( š ā¾ suc ā ) = ( š ā¾ suc ā ) ) |
72 |
|
nodmon |
ā¢ ( š ā No ā dom š ā On ) |
73 |
56 72
|
syl |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā dom š ā On ) |
74 |
|
onelon |
ā¢ ( ( dom š ā On ā§ ā ā dom š ) ā ā ā On ) |
75 |
73 51 74
|
syl2anc |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā ā ā On ) |
76 |
|
onsucb |
ā¢ ( ā ā On ā suc ā ā On ) |
77 |
75 76
|
sylib |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā suc ā ā On ) |
78 |
|
noreson |
ā¢ ( ( š ā No ā§ suc ā ā On ) ā ( š ā¾ suc ā ) ā No ) |
79 |
57 77 78
|
syl2anc |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā ( š ā¾ suc ā ) ā No ) |
80 |
|
sonr |
ā¢ ( ( <s Or No ā§ ( š ā¾ suc ā ) ā No ) ā Ā¬ ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ) |
81 |
58 80
|
mpan |
ā¢ ( ( š ā¾ suc ā ) ā No ā Ā¬ ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ) |
82 |
79 81
|
syl |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā Ā¬ ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ) |
83 |
82
|
adantr |
ā¢ ( ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā§ š <s š ) ā Ā¬ ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ) |
84 |
71 83
|
eqnbrtrd |
ā¢ ( ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā§ š <s š ) ā Ā¬ ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ) |
85 |
84
|
ex |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā ( š <s š ā Ā¬ ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ) ) |
86 |
|
sltres |
ā¢ ( ( š ā No ā§ š ā No ā§ suc ā ā On ) ā ( ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ā š <s š ) ) |
87 |
56 57 77 86
|
syl3anc |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā ( ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ā š <s š ) ) |
88 |
87
|
con3d |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā ( Ā¬ š <s š ā Ā¬ ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ) ) |
89 |
85 88
|
pm2.61d |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā Ā¬ ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ) |
90 |
54 89
|
eqnbrtrd |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ( š ā š“ ā§ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ) ) ā Ā¬ ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ) |
91 |
90
|
rexlimdvaa |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā ( ā š ā š“ ( ā ā dom š ā§ ā š£ ā š“ ( Ā¬ š£ <s š ā ( š ā¾ suc ā ) = ( š£ ā¾ suc ā ) ) ) ā Ā¬ ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ) ) |
92 |
47 91
|
sylbid |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā ( ā ā dom š ā Ā¬ ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ) ) |
93 |
92
|
imp |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ā ā dom š ) ā Ā¬ ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ) |
94 |
|
nodmord |
ā¢ ( š ā No ā Ord dom š ) |
95 |
|
ordsucss |
ā¢ ( Ord dom š ā ( ā ā dom š ā suc ā ā dom š ) ) |
96 |
6 94 95
|
3syl |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā ( ā ā dom š ā suc ā ā dom š ) ) |
97 |
96
|
imp |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ā ā dom š ) ā suc ā ā dom š ) |
98 |
97
|
resabs1d |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ā ā dom š ) ā ( ( š ā¾ dom š ) ā¾ suc ā ) = ( š ā¾ suc ā ) ) |
99 |
98
|
breq2d |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ā ā dom š ) ā ( ( š ā¾ suc ā ) <s ( ( š ā¾ dom š ) ā¾ suc ā ) ā ( š ā¾ suc ā ) <s ( š ā¾ suc ā ) ) ) |
100 |
93 99
|
mtbird |
ā¢ ( ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā§ ā ā dom š ) ā Ā¬ ( š ā¾ suc ā ) <s ( ( š ā¾ dom š ) ā¾ suc ā ) ) |
101 |
100
|
ralrimiva |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā ā ā ā dom š Ā¬ ( š ā¾ suc ā ) <s ( ( š ā¾ dom š ) ā¾ suc ā ) ) |
102 |
|
noresle |
ā¢ ( ( ( ( š ā¾ dom š ) ā No ā§ š ā No ) ā§ ( dom ( š ā¾ dom š ) ā dom š ā§ dom š ā dom š ā§ ā ā ā dom š Ā¬ ( š ā¾ suc ā ) <s ( ( š ā¾ dom š ) ā¾ suc ā ) ) ) ā Ā¬ š <s ( š ā¾ dom š ) ) |
103 |
10 6 14 15 101 102
|
syl23anc |
ā¢ ( ( Ā¬ ā š„ ā š“ ā š¦ ā š“ Ā¬ š„ <s š¦ ā§ ( š“ ā No ā§ š“ ā V ) ā§ š ā š“ ) ā Ā¬ š <s ( š ā¾ dom š ) ) |