| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nosupbnd1.1 | ⊢ 𝑆  =  if ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ,  ( ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 )  ∪  { 〈 dom  ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) ,  2o 〉 } ) ,  ( 𝑔  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) }  ↦  ( ℩ 𝑥 ∃ 𝑢  ∈  𝐴 ( 𝑔  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑔 )  =  ( 𝑣  ↾  suc  𝑔 ) )  ∧  ( 𝑢 ‘ 𝑔 )  =  𝑥 ) ) ) ) | 
						
							| 2 |  | simp2l | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  𝐴  ⊆   No  ) | 
						
							| 3 |  | simp3 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  𝑈  ∈  𝐴 ) | 
						
							| 4 | 2 3 | sseldd | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  𝑈  ∈   No  ) | 
						
							| 5 | 1 | nosupno | ⊢ ( ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  →  𝑆  ∈   No  ) | 
						
							| 6 | 5 | 3ad2ant2 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  𝑆  ∈   No  ) | 
						
							| 7 |  | nodmon | ⊢ ( 𝑆  ∈   No   →  dom  𝑆  ∈  On ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  dom  𝑆  ∈  On ) | 
						
							| 9 |  | noreson | ⊢ ( ( 𝑈  ∈   No   ∧  dom  𝑆  ∈  On )  →  ( 𝑈  ↾  dom  𝑆 )  ∈   No  ) | 
						
							| 10 | 4 8 9 | syl2anc | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  ( 𝑈  ↾  dom  𝑆 )  ∈   No  ) | 
						
							| 11 |  | dmres | ⊢ dom  ( 𝑈  ↾  dom  𝑆 )  =  ( dom  𝑆  ∩  dom  𝑈 ) | 
						
							| 12 |  | inss1 | ⊢ ( dom  𝑆  ∩  dom  𝑈 )  ⊆  dom  𝑆 | 
						
							| 13 | 11 12 | eqsstri | ⊢ dom  ( 𝑈  ↾  dom  𝑆 )  ⊆  dom  𝑆 | 
						
							| 14 | 13 | a1i | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  dom  ( 𝑈  ↾  dom  𝑆 )  ⊆  dom  𝑆 ) | 
						
							| 15 |  | ssidd | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  dom  𝑆  ⊆  dom  𝑆 ) | 
						
							| 16 |  | iffalse | ⊢ ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  →  if ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ,  ( ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 )  ∪  { 〈 dom  ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) ,  2o 〉 } ) ,  ( 𝑔  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) }  ↦  ( ℩ 𝑥 ∃ 𝑢  ∈  𝐴 ( 𝑔  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑔 )  =  ( 𝑣  ↾  suc  𝑔 ) )  ∧  ( 𝑢 ‘ 𝑔 )  =  𝑥 ) ) ) )  =  ( 𝑔  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) }  ↦  ( ℩ 𝑥 ∃ 𝑢  ∈  𝐴 ( 𝑔  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑔 )  =  ( 𝑣  ↾  suc  𝑔 ) )  ∧  ( 𝑢 ‘ 𝑔 )  =  𝑥 ) ) ) ) | 
						
							| 17 | 1 16 | eqtrid | ⊢ ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  →  𝑆  =  ( 𝑔  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) }  ↦  ( ℩ 𝑥 ∃ 𝑢  ∈  𝐴 ( 𝑔  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑔 )  =  ( 𝑣  ↾  suc  𝑔 ) )  ∧  ( 𝑢 ‘ 𝑔 )  =  𝑥 ) ) ) ) | 
						
							| 18 | 17 | dmeqd | ⊢ ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  →  dom  𝑆  =  dom  ( 𝑔  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) }  ↦  ( ℩ 𝑥 ∃ 𝑢  ∈  𝐴 ( 𝑔  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑔 )  =  ( 𝑣  ↾  suc  𝑔 ) )  ∧  ( 𝑢 ‘ 𝑔 )  =  𝑥 ) ) ) ) | 
						
							| 19 |  | iotaex | ⊢ ( ℩ 𝑥 ∃ 𝑢  ∈  𝐴 ( 𝑔  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑔 )  =  ( 𝑣  ↾  suc  𝑔 ) )  ∧  ( 𝑢 ‘ 𝑔 )  =  𝑥 ) )  ∈  V | 
						
							| 20 |  | eqid | ⊢ ( 𝑔  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) }  ↦  ( ℩ 𝑥 ∃ 𝑢  ∈  𝐴 ( 𝑔  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑔 )  =  ( 𝑣  ↾  suc  𝑔 ) )  ∧  ( 𝑢 ‘ 𝑔 )  =  𝑥 ) ) )  =  ( 𝑔  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) }  ↦  ( ℩ 𝑥 ∃ 𝑢  ∈  𝐴 ( 𝑔  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑔 )  =  ( 𝑣  ↾  suc  𝑔 ) )  ∧  ( 𝑢 ‘ 𝑔 )  =  𝑥 ) ) ) | 
						
							| 21 | 19 20 | dmmpti | ⊢ dom  ( 𝑔  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) }  ↦  ( ℩ 𝑥 ∃ 𝑢  ∈  𝐴 ( 𝑔  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑔 )  =  ( 𝑣  ↾  suc  𝑔 ) )  ∧  ( 𝑢 ‘ 𝑔 )  =  𝑥 ) ) )  =  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) } | 
						
							| 22 | 18 21 | eqtrdi | ⊢ ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  →  dom  𝑆  =  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) } ) | 
						
							| 23 | 22 | eleq2d | ⊢ ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  →  ( ℎ  ∈  dom  𝑆  ↔  ℎ  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) } ) ) | 
						
							| 24 |  | vex | ⊢ ℎ  ∈  V | 
						
							| 25 |  | eleq1w | ⊢ ( 𝑦  =  ℎ  →  ( 𝑦  ∈  dom  𝑢  ↔  ℎ  ∈  dom  𝑢 ) ) | 
						
							| 26 |  | suceq | ⊢ ( 𝑦  =  ℎ  →  suc  𝑦  =  suc  ℎ ) | 
						
							| 27 | 26 | reseq2d | ⊢ ( 𝑦  =  ℎ  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑢  ↾  suc  ℎ ) ) | 
						
							| 28 | 26 | reseq2d | ⊢ ( 𝑦  =  ℎ  →  ( 𝑣  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  ℎ ) ) | 
						
							| 29 | 27 28 | eqeq12d | ⊢ ( 𝑦  =  ℎ  →  ( ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 )  ↔  ( 𝑢  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) | 
						
							| 30 | 29 | imbi2d | ⊢ ( 𝑦  =  ℎ  →  ( ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) )  ↔  ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) | 
						
							| 31 | 30 | ralbidv | ⊢ ( 𝑦  =  ℎ  →  ( ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) )  ↔  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) | 
						
							| 32 | 25 31 | anbi12d | ⊢ ( 𝑦  =  ℎ  →  ( ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) )  ↔  ( ℎ  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) ) | 
						
							| 33 | 32 | rexbidv | ⊢ ( 𝑦  =  ℎ  →  ( ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) )  ↔  ∃ 𝑢  ∈  𝐴 ( ℎ  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) ) | 
						
							| 34 |  | dmeq | ⊢ ( 𝑢  =  𝑝  →  dom  𝑢  =  dom  𝑝 ) | 
						
							| 35 | 34 | eleq2d | ⊢ ( 𝑢  =  𝑝  →  ( ℎ  ∈  dom  𝑢  ↔  ℎ  ∈  dom  𝑝 ) ) | 
						
							| 36 |  | breq2 | ⊢ ( 𝑢  =  𝑝  →  ( 𝑣  <s  𝑢  ↔  𝑣  <s  𝑝 ) ) | 
						
							| 37 | 36 | notbid | ⊢ ( 𝑢  =  𝑝  →  ( ¬  𝑣  <s  𝑢  ↔  ¬  𝑣  <s  𝑝 ) ) | 
						
							| 38 |  | reseq1 | ⊢ ( 𝑢  =  𝑝  →  ( 𝑢  ↾  suc  ℎ )  =  ( 𝑝  ↾  suc  ℎ ) ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( 𝑢  =  𝑝  →  ( ( 𝑢  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ )  ↔  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) | 
						
							| 40 | 37 39 | imbi12d | ⊢ ( 𝑢  =  𝑝  →  ( ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) )  ↔  ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) | 
						
							| 41 | 40 | ralbidv | ⊢ ( 𝑢  =  𝑝  →  ( ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) )  ↔  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) | 
						
							| 42 | 35 41 | anbi12d | ⊢ ( 𝑢  =  𝑝  →  ( ( ℎ  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) )  ↔  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) ) | 
						
							| 43 | 42 | cbvrexvw | ⊢ ( ∃ 𝑢  ∈  𝐴 ( ℎ  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) )  ↔  ∃ 𝑝  ∈  𝐴 ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) | 
						
							| 44 | 33 43 | bitrdi | ⊢ ( 𝑦  =  ℎ  →  ( ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) )  ↔  ∃ 𝑝  ∈  𝐴 ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) ) | 
						
							| 45 | 24 44 | elab | ⊢ ( ℎ  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) }  ↔  ∃ 𝑝  ∈  𝐴 ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) | 
						
							| 46 | 23 45 | bitrdi | ⊢ ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  →  ( ℎ  ∈  dom  𝑆  ↔  ∃ 𝑝  ∈  𝐴 ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) ) | 
						
							| 47 | 46 | 3ad2ant1 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  ( ℎ  ∈  dom  𝑆  ↔  ∃ 𝑝  ∈  𝐴 ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) ) | 
						
							| 48 |  | simpl1 | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) | 
						
							| 49 |  | simpl2 | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V ) ) | 
						
							| 50 |  | simprl | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  𝑝  ∈  𝐴 ) | 
						
							| 51 |  | simprrl | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ℎ  ∈  dom  𝑝 ) | 
						
							| 52 |  | simprrr | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) | 
						
							| 53 | 1 | nosupres | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑝  ∈  𝐴  ∧  ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) )  →  ( 𝑆  ↾  suc  ℎ )  =  ( 𝑝  ↾  suc  ℎ ) ) | 
						
							| 54 | 48 49 50 51 52 53 | syl113anc | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ( 𝑆  ↾  suc  ℎ )  =  ( 𝑝  ↾  suc  ℎ ) ) | 
						
							| 55 |  | simpl2l | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  𝐴  ⊆   No  ) | 
						
							| 56 | 55 50 | sseldd | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  𝑝  ∈   No  ) | 
						
							| 57 | 4 | adantr | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  𝑈  ∈   No  ) | 
						
							| 58 |  | sltso | ⊢  <s   Or   No | 
						
							| 59 |  | soasym | ⊢ ( (  <s   Or   No   ∧  ( 𝑝  ∈   No   ∧  𝑈  ∈   No  ) )  →  ( 𝑝  <s  𝑈  →  ¬  𝑈  <s  𝑝 ) ) | 
						
							| 60 | 58 59 | mpan | ⊢ ( ( 𝑝  ∈   No   ∧  𝑈  ∈   No  )  →  ( 𝑝  <s  𝑈  →  ¬  𝑈  <s  𝑝 ) ) | 
						
							| 61 | 56 57 60 | syl2anc | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ( 𝑝  <s  𝑈  →  ¬  𝑈  <s  𝑝 ) ) | 
						
							| 62 |  | simpl3 | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  𝑈  ∈  𝐴 ) | 
						
							| 63 |  | breq1 | ⊢ ( 𝑣  =  𝑈  →  ( 𝑣  <s  𝑝  ↔  𝑈  <s  𝑝 ) ) | 
						
							| 64 | 63 | notbid | ⊢ ( 𝑣  =  𝑈  →  ( ¬  𝑣  <s  𝑝  ↔  ¬  𝑈  <s  𝑝 ) ) | 
						
							| 65 |  | reseq1 | ⊢ ( 𝑣  =  𝑈  →  ( 𝑣  ↾  suc  ℎ )  =  ( 𝑈  ↾  suc  ℎ ) ) | 
						
							| 66 | 65 | eqeq2d | ⊢ ( 𝑣  =  𝑈  →  ( ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ )  ↔  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑈  ↾  suc  ℎ ) ) ) | 
						
							| 67 | 64 66 | imbi12d | ⊢ ( 𝑣  =  𝑈  →  ( ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) )  ↔  ( ¬  𝑈  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑈  ↾  suc  ℎ ) ) ) ) | 
						
							| 68 | 67 | rspcv | ⊢ ( 𝑈  ∈  𝐴  →  ( ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) )  →  ( ¬  𝑈  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑈  ↾  suc  ℎ ) ) ) ) | 
						
							| 69 | 62 52 68 | sylc | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ( ¬  𝑈  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑈  ↾  suc  ℎ ) ) ) | 
						
							| 70 | 61 69 | syld | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ( 𝑝  <s  𝑈  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑈  ↾  suc  ℎ ) ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  ∧  𝑝  <s  𝑈 )  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑈  ↾  suc  ℎ ) ) | 
						
							| 72 |  | nodmon | ⊢ ( 𝑝  ∈   No   →  dom  𝑝  ∈  On ) | 
						
							| 73 | 56 72 | syl | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  dom  𝑝  ∈  On ) | 
						
							| 74 |  | onelon | ⊢ ( ( dom  𝑝  ∈  On  ∧  ℎ  ∈  dom  𝑝 )  →  ℎ  ∈  On ) | 
						
							| 75 | 73 51 74 | syl2anc | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ℎ  ∈  On ) | 
						
							| 76 |  | onsucb | ⊢ ( ℎ  ∈  On  ↔  suc  ℎ  ∈  On ) | 
						
							| 77 | 75 76 | sylib | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  suc  ℎ  ∈  On ) | 
						
							| 78 |  | noreson | ⊢ ( ( 𝑈  ∈   No   ∧  suc  ℎ  ∈  On )  →  ( 𝑈  ↾  suc  ℎ )  ∈   No  ) | 
						
							| 79 | 57 77 78 | syl2anc | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ( 𝑈  ↾  suc  ℎ )  ∈   No  ) | 
						
							| 80 |  | sonr | ⊢ ( (  <s   Or   No   ∧  ( 𝑈  ↾  suc  ℎ )  ∈   No  )  →  ¬  ( 𝑈  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ ) ) | 
						
							| 81 | 58 80 | mpan | ⊢ ( ( 𝑈  ↾  suc  ℎ )  ∈   No   →  ¬  ( 𝑈  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ ) ) | 
						
							| 82 | 79 81 | syl | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ¬  ( 𝑈  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ ) ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  ∧  𝑝  <s  𝑈 )  →  ¬  ( 𝑈  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ ) ) | 
						
							| 84 | 71 83 | eqnbrtrd | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  ∧  𝑝  <s  𝑈 )  →  ¬  ( 𝑝  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ ) ) | 
						
							| 85 | 84 | ex | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ( 𝑝  <s  𝑈  →  ¬  ( 𝑝  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ ) ) ) | 
						
							| 86 |  | sltres | ⊢ ( ( 𝑝  ∈   No   ∧  𝑈  ∈   No   ∧  suc  ℎ  ∈  On )  →  ( ( 𝑝  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ )  →  𝑝  <s  𝑈 ) ) | 
						
							| 87 | 56 57 77 86 | syl3anc | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ( ( 𝑝  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ )  →  𝑝  <s  𝑈 ) ) | 
						
							| 88 | 87 | con3d | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ( ¬  𝑝  <s  𝑈  →  ¬  ( 𝑝  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ ) ) ) | 
						
							| 89 | 85 88 | pm2.61d | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ¬  ( 𝑝  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ ) ) | 
						
							| 90 | 54 89 | eqnbrtrd | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ( 𝑝  ∈  𝐴  ∧  ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) ) ) )  →  ¬  ( 𝑆  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ ) ) | 
						
							| 91 | 90 | rexlimdvaa | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  ( ∃ 𝑝  ∈  𝐴 ( ℎ  ∈  dom  𝑝  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑝  →  ( 𝑝  ↾  suc  ℎ )  =  ( 𝑣  ↾  suc  ℎ ) ) )  →  ¬  ( 𝑆  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ ) ) ) | 
						
							| 92 | 47 91 | sylbid | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  ( ℎ  ∈  dom  𝑆  →  ¬  ( 𝑆  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ ) ) ) | 
						
							| 93 | 92 | imp | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ℎ  ∈  dom  𝑆 )  →  ¬  ( 𝑆  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ ) ) | 
						
							| 94 |  | nodmord | ⊢ ( 𝑆  ∈   No   →  Ord  dom  𝑆 ) | 
						
							| 95 |  | ordsucss | ⊢ ( Ord  dom  𝑆  →  ( ℎ  ∈  dom  𝑆  →  suc  ℎ  ⊆  dom  𝑆 ) ) | 
						
							| 96 | 6 94 95 | 3syl | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  ( ℎ  ∈  dom  𝑆  →  suc  ℎ  ⊆  dom  𝑆 ) ) | 
						
							| 97 | 96 | imp | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ℎ  ∈  dom  𝑆 )  →  suc  ℎ  ⊆  dom  𝑆 ) | 
						
							| 98 | 97 | resabs1d | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ℎ  ∈  dom  𝑆 )  →  ( ( 𝑈  ↾  dom  𝑆 )  ↾  suc  ℎ )  =  ( 𝑈  ↾  suc  ℎ ) ) | 
						
							| 99 | 98 | breq2d | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ℎ  ∈  dom  𝑆 )  →  ( ( 𝑆  ↾  suc  ℎ )  <s  ( ( 𝑈  ↾  dom  𝑆 )  ↾  suc  ℎ )  ↔  ( 𝑆  ↾  suc  ℎ )  <s  ( 𝑈  ↾  suc  ℎ ) ) ) | 
						
							| 100 | 93 99 | mtbird | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  ∧  ℎ  ∈  dom  𝑆 )  →  ¬  ( 𝑆  ↾  suc  ℎ )  <s  ( ( 𝑈  ↾  dom  𝑆 )  ↾  suc  ℎ ) ) | 
						
							| 101 | 100 | ralrimiva | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  ∀ ℎ  ∈  dom  𝑆 ¬  ( 𝑆  ↾  suc  ℎ )  <s  ( ( 𝑈  ↾  dom  𝑆 )  ↾  suc  ℎ ) ) | 
						
							| 102 |  | noresle | ⊢ ( ( ( ( 𝑈  ↾  dom  𝑆 )  ∈   No   ∧  𝑆  ∈   No  )  ∧  ( dom  ( 𝑈  ↾  dom  𝑆 )  ⊆  dom  𝑆  ∧  dom  𝑆  ⊆  dom  𝑆  ∧  ∀ ℎ  ∈  dom  𝑆 ¬  ( 𝑆  ↾  suc  ℎ )  <s  ( ( 𝑈  ↾  dom  𝑆 )  ↾  suc  ℎ ) ) )  →  ¬  𝑆  <s  ( 𝑈  ↾  dom  𝑆 ) ) | 
						
							| 103 | 10 6 14 15 101 102 | syl23anc | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  𝑈  ∈  𝐴 )  →  ¬  𝑆  <s  ( 𝑈  ↾  dom  𝑆 ) ) |