| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nosupbnd1.1 | ⊢ 𝑆  =  if ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ,  ( ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 )  ∪  { 〈 dom  ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) ,  2o 〉 } ) ,  ( 𝑔  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) }  ↦  ( ℩ 𝑥 ∃ 𝑢  ∈  𝐴 ( 𝑔  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑔 )  =  ( 𝑣  ↾  suc  𝑔 ) )  ∧  ( 𝑢 ‘ 𝑔 )  =  𝑥 ) ) ) ) | 
						
							| 2 |  | simpl1 | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) | 
						
							| 3 |  | simpl2 | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V ) ) | 
						
							| 4 |  | simprl | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  𝑤  ∈  𝐴 ) | 
						
							| 5 |  | simpl3 | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) | 
						
							| 6 |  | simprr | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  𝑈  <s  𝑤 ) | 
						
							| 7 |  | simp2l | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  𝐴  ⊆   No  ) | 
						
							| 8 |  | simp3l | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  𝑈  ∈  𝐴 ) | 
						
							| 9 | 7 8 | sseldd | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  𝑈  ∈   No  ) | 
						
							| 10 |  | simpl2l | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  𝐴  ⊆   No  ) | 
						
							| 11 | 10 4 | sseldd | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  𝑤  ∈   No  ) | 
						
							| 12 |  | sltso | ⊢  <s   Or   No | 
						
							| 13 |  | soasym | ⊢ ( (  <s   Or   No   ∧  ( 𝑈  ∈   No   ∧  𝑤  ∈   No  ) )  →  ( 𝑈  <s  𝑤  →  ¬  𝑤  <s  𝑈 ) ) | 
						
							| 14 | 12 13 | mpan | ⊢ ( ( 𝑈  ∈   No   ∧  𝑤  ∈   No  )  →  ( 𝑈  <s  𝑤  →  ¬  𝑤  <s  𝑈 ) ) | 
						
							| 15 | 9 11 14 | syl2an2r | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝑈  <s  𝑤  →  ¬  𝑤  <s  𝑈 ) ) | 
						
							| 16 | 6 15 | mpd | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ¬  𝑤  <s  𝑈 ) | 
						
							| 17 | 4 16 | jca | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝑤  ∈  𝐴  ∧  ¬  𝑤  <s  𝑈 ) ) | 
						
							| 18 | 1 | nosupbnd1lem2 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑤  ∈  𝐴  ∧  ¬  𝑤  <s  𝑈 ) ) )  →  ( 𝑤  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 19 | 2 3 5 17 18 | syl112anc | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝑤  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 20 | 1 | nosupbnd1lem3 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑤  ∈  𝐴  ∧  ( 𝑤  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( 𝑤 ‘ dom  𝑆 )  ≠  2o ) | 
						
							| 21 | 2 3 4 19 20 | syl112anc | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝑤 ‘ dom  𝑆 )  ≠  2o ) | 
						
							| 22 | 21 | neneqd | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ¬  ( 𝑤 ‘ dom  𝑆 )  =  2o ) | 
						
							| 23 | 22 | expr | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑈  <s  𝑤  →  ¬  ( 𝑤 ‘ dom  𝑆 )  =  2o ) ) | 
						
							| 24 |  | imnan | ⊢ ( ( 𝑈  <s  𝑤  →  ¬  ( 𝑤 ‘ dom  𝑆 )  =  2o )  ↔  ¬  ( 𝑈  <s  𝑤  ∧  ( 𝑤 ‘ dom  𝑆 )  =  2o ) ) | 
						
							| 25 | 23 24 | sylib | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  𝑤  ∈  𝐴 )  →  ¬  ( 𝑈  <s  𝑤  ∧  ( 𝑤 ‘ dom  𝑆 )  =  2o ) ) | 
						
							| 26 | 25 | nrexdv | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ¬  ∃ 𝑤  ∈  𝐴 ( 𝑈  <s  𝑤  ∧  ( 𝑤 ‘ dom  𝑆 )  =  2o ) ) | 
						
							| 27 |  | simpl3l | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  →  𝑈  ∈  𝐴 ) | 
						
							| 28 |  | simpl1 | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  →  ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) | 
						
							| 29 |  | breq2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑢  <s  𝑤  ↔  𝑢  <s  𝑦 ) ) | 
						
							| 30 | 29 | cbvrexvw | ⊢ ( ∃ 𝑤  ∈  𝐴 𝑢  <s  𝑤  ↔  ∃ 𝑦  ∈  𝐴 𝑢  <s  𝑦 ) | 
						
							| 31 |  | breq1 | ⊢ ( 𝑢  =  𝑥  →  ( 𝑢  <s  𝑦  ↔  𝑥  <s  𝑦 ) ) | 
						
							| 32 | 31 | rexbidv | ⊢ ( 𝑢  =  𝑥  →  ( ∃ 𝑦  ∈  𝐴 𝑢  <s  𝑦  ↔  ∃ 𝑦  ∈  𝐴 𝑥  <s  𝑦 ) ) | 
						
							| 33 | 30 32 | bitrid | ⊢ ( 𝑢  =  𝑥  →  ( ∃ 𝑤  ∈  𝐴 𝑢  <s  𝑤  ↔  ∃ 𝑦  ∈  𝐴 𝑥  <s  𝑦 ) ) | 
						
							| 34 | 33 | cbvralvw | ⊢ ( ∀ 𝑢  ∈  𝐴 ∃ 𝑤  ∈  𝐴 𝑢  <s  𝑤  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  <s  𝑦 ) | 
						
							| 35 |  | dfrex2 | ⊢ ( ∃ 𝑦  ∈  𝐴 𝑥  <s  𝑦  ↔  ¬  ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) | 
						
							| 36 | 35 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  <s  𝑦  ↔  ∀ 𝑥  ∈  𝐴 ¬  ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) | 
						
							| 37 |  | ralnex | ⊢ ( ∀ 𝑥  ∈  𝐴 ¬  ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ↔  ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) | 
						
							| 38 | 34 36 37 | 3bitri | ⊢ ( ∀ 𝑢  ∈  𝐴 ∃ 𝑤  ∈  𝐴 𝑢  <s  𝑤  ↔  ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) | 
						
							| 39 | 28 38 | sylibr | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  →  ∀ 𝑢  ∈  𝐴 ∃ 𝑤  ∈  𝐴 𝑢  <s  𝑤 ) | 
						
							| 40 |  | breq1 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑢  <s  𝑤  ↔  𝑈  <s  𝑤 ) ) | 
						
							| 41 | 40 | rexbidv | ⊢ ( 𝑢  =  𝑈  →  ( ∃ 𝑤  ∈  𝐴 𝑢  <s  𝑤  ↔  ∃ 𝑤  ∈  𝐴 𝑈  <s  𝑤 ) ) | 
						
							| 42 | 41 | rspcv | ⊢ ( 𝑈  ∈  𝐴  →  ( ∀ 𝑢  ∈  𝐴 ∃ 𝑤  ∈  𝐴 𝑢  <s  𝑤  →  ∃ 𝑤  ∈  𝐴 𝑈  <s  𝑤 ) ) | 
						
							| 43 | 27 39 42 | sylc | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  →  ∃ 𝑤  ∈  𝐴 𝑈  <s  𝑤 ) | 
						
							| 44 |  | simpl2l | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  →  𝐴  ⊆   No  ) | 
						
							| 45 | 44 27 | sseldd | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  →  𝑈  ∈   No  ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  𝑈  ∈   No  ) | 
						
							| 47 | 44 | adantr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  𝐴  ⊆   No  ) | 
						
							| 48 |  | simprl | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  𝑤  ∈  𝐴 ) | 
						
							| 49 | 47 48 | sseldd | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  𝑤  ∈   No  ) | 
						
							| 50 | 1 | nosupno | ⊢ ( ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  →  𝑆  ∈   No  ) | 
						
							| 51 | 50 | 3ad2ant2 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  𝑆  ∈   No  ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  →  𝑆  ∈   No  ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  𝑆  ∈   No  ) | 
						
							| 54 |  | nodmon | ⊢ ( 𝑆  ∈   No   →  dom  𝑆  ∈  On ) | 
						
							| 55 | 53 54 | syl | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  dom  𝑆  ∈  On ) | 
						
							| 56 |  | simpl3r | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  →  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 58 |  | simpll1 | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) | 
						
							| 59 |  | simpll2 | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V ) ) | 
						
							| 60 |  | simpll3 | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) | 
						
							| 61 |  | simprr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  𝑈  <s  𝑤 ) | 
						
							| 62 | 45 49 14 | syl2an2r | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝑈  <s  𝑤  →  ¬  𝑤  <s  𝑈 ) ) | 
						
							| 63 | 61 62 | mpd | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ¬  𝑤  <s  𝑈 ) | 
						
							| 64 | 48 63 | jca | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝑤  ∈  𝐴  ∧  ¬  𝑤  <s  𝑈 ) ) | 
						
							| 65 | 58 59 60 64 18 | syl112anc | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝑤  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 66 | 57 65 | eqtr4d | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝑈  ↾  dom  𝑆 )  =  ( 𝑤  ↾  dom  𝑆 ) ) | 
						
							| 67 |  | simplr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝑈 ‘ dom  𝑆 )  =  ∅ ) | 
						
							| 68 |  | nolt02o | ⊢ ( ( ( 𝑈  ∈   No   ∧  𝑤  ∈   No   ∧  dom  𝑆  ∈  On )  ∧  ( ( 𝑈  ↾  dom  𝑆 )  =  ( 𝑤  ↾  dom  𝑆 )  ∧  𝑈  <s  𝑤 )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  →  ( 𝑤 ‘ dom  𝑆 )  =  2o ) | 
						
							| 69 | 46 49 55 66 61 67 68 | syl321anc | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑈  <s  𝑤 ) )  →  ( 𝑤 ‘ dom  𝑆 )  =  2o ) | 
						
							| 70 | 69 | expr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑈  <s  𝑤  →  ( 𝑤 ‘ dom  𝑆 )  =  2o ) ) | 
						
							| 71 | 70 | ancld | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑈  <s  𝑤  →  ( 𝑈  <s  𝑤  ∧  ( 𝑤 ‘ dom  𝑆 )  =  2o ) ) ) | 
						
							| 72 | 71 | reximdva | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  →  ( ∃ 𝑤  ∈  𝐴 𝑈  <s  𝑤  →  ∃ 𝑤  ∈  𝐴 ( 𝑈  <s  𝑤  ∧  ( 𝑤 ‘ dom  𝑆 )  =  2o ) ) ) | 
						
							| 73 | 43 72 | mpd | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ∅ )  →  ∃ 𝑤  ∈  𝐴 ( 𝑈  <s  𝑤  ∧  ( 𝑤 ‘ dom  𝑆 )  =  2o ) ) | 
						
							| 74 | 26 73 | mtand | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ¬  ( 𝑈 ‘ dom  𝑆 )  =  ∅ ) | 
						
							| 75 | 74 | neqned | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( 𝑈 ‘ dom  𝑆 )  ≠  ∅ ) |