Metamath Proof Explorer


Theorem nosupbnd1lem4

Description: Lemma for nosupbnd1 . If U is a prolongment of S and in A , then ( Udom S ) is not undefined. (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Hypothesis nosupbnd1.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
Assertion nosupbnd1lem4 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 nosupbnd1.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
2 simpl1 ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
3 simpl2 ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝐴 No 𝐴 ∈ V ) )
4 simprl ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → 𝑤𝐴 )
5 simpl3 ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) )
6 simprr ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → 𝑈 <s 𝑤 )
7 simp2l ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → 𝐴 No )
8 simp3l ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → 𝑈𝐴 )
9 7 8 sseldd ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → 𝑈 No )
10 simpl2l ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → 𝐴 No )
11 10 4 sseldd ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → 𝑤 No )
12 sltso <s Or No
13 soasym ( ( <s Or No ∧ ( 𝑈 No 𝑤 No ) ) → ( 𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈 ) )
14 12 13 mpan ( ( 𝑈 No 𝑤 No ) → ( 𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈 ) )
15 9 11 14 syl2an2r ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈 ) )
16 6 15 mpd ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ¬ 𝑤 <s 𝑈 )
17 4 16 jca ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝑤𝐴 ∧ ¬ 𝑤 <s 𝑈 ) )
18 1 nosupbnd1lem2 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑤𝐴 ∧ ¬ 𝑤 <s 𝑈 ) ) ) → ( 𝑤 ↾ dom 𝑆 ) = 𝑆 )
19 2 3 5 17 18 syl112anc ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝑤 ↾ dom 𝑆 ) = 𝑆 )
20 1 nosupbnd1lem3 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑤𝐴 ∧ ( 𝑤 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑤 ‘ dom 𝑆 ) ≠ 2o )
21 2 3 4 19 20 syl112anc ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝑤 ‘ dom 𝑆 ) ≠ 2o )
22 21 neneqd ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ¬ ( 𝑤 ‘ dom 𝑆 ) = 2o )
23 22 expr ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ 𝑤𝐴 ) → ( 𝑈 <s 𝑤 → ¬ ( 𝑤 ‘ dom 𝑆 ) = 2o ) )
24 imnan ( ( 𝑈 <s 𝑤 → ¬ ( 𝑤 ‘ dom 𝑆 ) = 2o ) ↔ ¬ ( 𝑈 <s 𝑤 ∧ ( 𝑤 ‘ dom 𝑆 ) = 2o ) )
25 23 24 sylib ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ 𝑤𝐴 ) → ¬ ( 𝑈 <s 𝑤 ∧ ( 𝑤 ‘ dom 𝑆 ) = 2o ) )
26 25 nrexdv ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ¬ ∃ 𝑤𝐴 ( 𝑈 <s 𝑤 ∧ ( 𝑤 ‘ dom 𝑆 ) = 2o ) )
27 simpl3l ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) → 𝑈𝐴 )
28 simpl1 ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) → ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
29 breq2 ( 𝑤 = 𝑦 → ( 𝑢 <s 𝑤𝑢 <s 𝑦 ) )
30 29 cbvrexvw ( ∃ 𝑤𝐴 𝑢 <s 𝑤 ↔ ∃ 𝑦𝐴 𝑢 <s 𝑦 )
31 breq1 ( 𝑢 = 𝑥 → ( 𝑢 <s 𝑦𝑥 <s 𝑦 ) )
32 31 rexbidv ( 𝑢 = 𝑥 → ( ∃ 𝑦𝐴 𝑢 <s 𝑦 ↔ ∃ 𝑦𝐴 𝑥 <s 𝑦 ) )
33 30 32 syl5bb ( 𝑢 = 𝑥 → ( ∃ 𝑤𝐴 𝑢 <s 𝑤 ↔ ∃ 𝑦𝐴 𝑥 <s 𝑦 ) )
34 33 cbvralvw ( ∀ 𝑢𝐴𝑤𝐴 𝑢 <s 𝑤 ↔ ∀ 𝑥𝐴𝑦𝐴 𝑥 <s 𝑦 )
35 dfrex2 ( ∃ 𝑦𝐴 𝑥 <s 𝑦 ↔ ¬ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 )
36 35 ralbii ( ∀ 𝑥𝐴𝑦𝐴 𝑥 <s 𝑦 ↔ ∀ 𝑥𝐴 ¬ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 )
37 ralnex ( ∀ 𝑥𝐴 ¬ ∀ 𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
38 34 36 37 3bitri ( ∀ 𝑢𝐴𝑤𝐴 𝑢 <s 𝑤 ↔ ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
39 28 38 sylibr ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) → ∀ 𝑢𝐴𝑤𝐴 𝑢 <s 𝑤 )
40 breq1 ( 𝑢 = 𝑈 → ( 𝑢 <s 𝑤𝑈 <s 𝑤 ) )
41 40 rexbidv ( 𝑢 = 𝑈 → ( ∃ 𝑤𝐴 𝑢 <s 𝑤 ↔ ∃ 𝑤𝐴 𝑈 <s 𝑤 ) )
42 41 rspcv ( 𝑈𝐴 → ( ∀ 𝑢𝐴𝑤𝐴 𝑢 <s 𝑤 → ∃ 𝑤𝐴 𝑈 <s 𝑤 ) )
43 27 39 42 sylc ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) → ∃ 𝑤𝐴 𝑈 <s 𝑤 )
44 simpl2l ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) → 𝐴 No )
45 44 27 sseldd ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) → 𝑈 No )
46 45 adantr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → 𝑈 No )
47 44 adantr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → 𝐴 No )
48 simprl ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → 𝑤𝐴 )
49 47 48 sseldd ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → 𝑤 No )
50 1 nosupno ( ( 𝐴 No 𝐴 ∈ V ) → 𝑆 No )
51 50 3ad2ant2 ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → 𝑆 No )
52 51 adantr ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) → 𝑆 No )
53 52 adantr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → 𝑆 No )
54 nodmon ( 𝑆 No → dom 𝑆 ∈ On )
55 53 54 syl ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → dom 𝑆 ∈ On )
56 simpl3r ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) → ( 𝑈 ↾ dom 𝑆 ) = 𝑆 )
57 56 adantr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝑈 ↾ dom 𝑆 ) = 𝑆 )
58 simpll1 ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 )
59 simpll2 ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝐴 No 𝐴 ∈ V ) )
60 simpll3 ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) )
61 simprr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → 𝑈 <s 𝑤 )
62 45 49 14 syl2an2r ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈 ) )
63 61 62 mpd ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ¬ 𝑤 <s 𝑈 )
64 48 63 jca ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝑤𝐴 ∧ ¬ 𝑤 <s 𝑈 ) )
65 58 59 60 64 18 syl112anc ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝑤 ↾ dom 𝑆 ) = 𝑆 )
66 57 65 eqtr4d ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝑈 ↾ dom 𝑆 ) = ( 𝑤 ↾ dom 𝑆 ) )
67 simplr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝑈 ‘ dom 𝑆 ) = ∅ )
68 nolt02o ( ( ( 𝑈 No 𝑤 No ∧ dom 𝑆 ∈ On ) ∧ ( ( 𝑈 ↾ dom 𝑆 ) = ( 𝑤 ↾ dom 𝑆 ) ∧ 𝑈 <s 𝑤 ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) → ( 𝑤 ‘ dom 𝑆 ) = 2o )
69 46 49 55 66 61 67 68 syl321anc ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ ( 𝑤𝐴𝑈 <s 𝑤 ) ) → ( 𝑤 ‘ dom 𝑆 ) = 2o )
70 69 expr ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ 𝑤𝐴 ) → ( 𝑈 <s 𝑤 → ( 𝑤 ‘ dom 𝑆 ) = 2o ) )
71 70 ancld ( ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) ∧ 𝑤𝐴 ) → ( 𝑈 <s 𝑤 → ( 𝑈 <s 𝑤 ∧ ( 𝑤 ‘ dom 𝑆 ) = 2o ) ) )
72 71 reximdva ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) → ( ∃ 𝑤𝐴 𝑈 <s 𝑤 → ∃ 𝑤𝐴 ( 𝑈 <s 𝑤 ∧ ( 𝑤 ‘ dom 𝑆 ) = 2o ) ) )
73 43 72 mpd ( ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = ∅ ) → ∃ 𝑤𝐴 ( 𝑈 <s 𝑤 ∧ ( 𝑤 ‘ dom 𝑆 ) = 2o ) )
74 26 73 mtand ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ¬ ( 𝑈 ‘ dom 𝑆 ) = ∅ )
75 74 neqned ( ( ¬ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝑈𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ ∅ )