| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nosupbnd1.1 | ⊢ 𝑆  =  if ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ,  ( ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 )  ∪  { 〈 dom  ( ℩ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) ,  2o 〉 } ) ,  ( 𝑔  ∈  { 𝑦  ∣  ∃ 𝑢  ∈  𝐴 ( 𝑦  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑦 )  =  ( 𝑣  ↾  suc  𝑦 ) ) ) }  ↦  ( ℩ 𝑥 ∃ 𝑢  ∈  𝐴 ( 𝑔  ∈  dom  𝑢  ∧  ∀ 𝑣  ∈  𝐴 ( ¬  𝑣  <s  𝑢  →  ( 𝑢  ↾  suc  𝑔 )  =  ( 𝑣  ↾  suc  𝑔 ) )  ∧  ( 𝑢 ‘ 𝑔 )  =  𝑥 ) ) ) ) | 
						
							| 2 | 1 | nosupno | ⊢ ( ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  →  𝑆  ∈   No  ) | 
						
							| 3 | 2 | 3ad2ant2 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  𝑆  ∈   No  ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  →  𝑆  ∈   No  ) | 
						
							| 5 |  | nodmord | ⊢ ( 𝑆  ∈   No   →  Ord  dom  𝑆 ) | 
						
							| 6 |  | ordirr | ⊢ ( Ord  dom  𝑆  →  ¬  dom  𝑆  ∈  dom  𝑆 ) | 
						
							| 7 | 4 5 6 | 3syl | ⊢ ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  →  ¬  dom  𝑆  ∈  dom  𝑆 ) | 
						
							| 8 |  | simpr3l | ⊢ ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  →  𝑈  ∈  𝐴 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  𝑈  ∈  𝐴 ) | 
						
							| 10 |  | ndmfv | ⊢ ( ¬  dom  𝑆  ∈  dom  𝑈  →  ( 𝑈 ‘ dom  𝑆 )  =  ∅ ) | 
						
							| 11 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 12 | 11 | prid1 | ⊢ 1o  ∈  { 1o ,  2o } | 
						
							| 13 | 12 | nosgnn0i | ⊢ ∅  ≠  1o | 
						
							| 14 |  | neeq1 | ⊢ ( ( 𝑈 ‘ dom  𝑆 )  =  ∅  →  ( ( 𝑈 ‘ dom  𝑆 )  ≠  1o  ↔  ∅  ≠  1o ) ) | 
						
							| 15 | 13 14 | mpbiri | ⊢ ( ( 𝑈 ‘ dom  𝑆 )  =  ∅  →  ( 𝑈 ‘ dom  𝑆 )  ≠  1o ) | 
						
							| 16 | 15 | neneqd | ⊢ ( ( 𝑈 ‘ dom  𝑆 )  =  ∅  →  ¬  ( 𝑈 ‘ dom  𝑆 )  =  1o ) | 
						
							| 17 | 10 16 | syl | ⊢ ( ¬  dom  𝑆  ∈  dom  𝑈  →  ¬  ( 𝑈 ‘ dom  𝑆 )  =  1o ) | 
						
							| 18 | 17 | con4i | ⊢ ( ( 𝑈 ‘ dom  𝑆 )  =  1o  →  dom  𝑆  ∈  dom  𝑈 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  dom  𝑆  ∈  dom  𝑈 ) | 
						
							| 20 |  | simp2l | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  𝐴  ⊆   No  ) | 
						
							| 21 |  | simp3l | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  𝑈  ∈  𝐴 ) | 
						
							| 22 | 20 21 | sseldd | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  𝑈  ∈   No  ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  𝑈  ∈   No  ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  𝑈  ∈   No  ) | 
						
							| 25 |  | nofun | ⊢ ( 𝑈  ∈   No   →  Fun  𝑈 ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  Fun  𝑈 ) | 
						
							| 27 |  | simpl2l | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  𝐴  ⊆   No  ) | 
						
							| 28 |  | simpll | ⊢ ( ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o )  →  𝑧  ∈  𝐴 ) | 
						
							| 29 |  | ssel2 | ⊢ ( ( 𝐴  ⊆   No   ∧  𝑧  ∈  𝐴 )  →  𝑧  ∈   No  ) | 
						
							| 30 | 27 28 29 | syl2an | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  𝑧  ∈   No  ) | 
						
							| 31 |  | nofun | ⊢ ( 𝑧  ∈   No   →  Fun  𝑧 ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  Fun  𝑧 ) | 
						
							| 33 |  | simpl3r | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 35 |  | simpll1 | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) | 
						
							| 36 |  | simpll2 | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V ) ) | 
						
							| 37 |  | simpll3 | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) | 
						
							| 38 |  | simprl | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) ) | 
						
							| 39 | 1 | nosupbnd1lem2 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) ) )  →  ( 𝑧  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 40 | 35 36 37 38 39 | syl112anc | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  ( 𝑧  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 41 | 34 40 | eqtr4d | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  ( 𝑈  ↾  dom  𝑆 )  =  ( 𝑧  ↾  dom  𝑆 ) ) | 
						
							| 42 | 18 | adantl | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  dom  𝑆  ∈  dom  𝑈 ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  dom  𝑆  ∈  dom  𝑈 ) | 
						
							| 44 |  | ndmfv | ⊢ ( ¬  dom  𝑆  ∈  dom  𝑧  →  ( 𝑧 ‘ dom  𝑆 )  =  ∅ ) | 
						
							| 45 |  | neeq1 | ⊢ ( ( 𝑧 ‘ dom  𝑆 )  =  ∅  →  ( ( 𝑧 ‘ dom  𝑆 )  ≠  1o  ↔  ∅  ≠  1o ) ) | 
						
							| 46 | 13 45 | mpbiri | ⊢ ( ( 𝑧 ‘ dom  𝑆 )  =  ∅  →  ( 𝑧 ‘ dom  𝑆 )  ≠  1o ) | 
						
							| 47 | 46 | neneqd | ⊢ ( ( 𝑧 ‘ dom  𝑆 )  =  ∅  →  ¬  ( 𝑧 ‘ dom  𝑆 )  =  1o ) | 
						
							| 48 | 44 47 | syl | ⊢ ( ¬  dom  𝑆  ∈  dom  𝑧  →  ¬  ( 𝑧 ‘ dom  𝑆 )  =  1o ) | 
						
							| 49 | 48 | con4i | ⊢ ( ( 𝑧 ‘ dom  𝑆 )  =  1o  →  dom  𝑆  ∈  dom  𝑧 ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o )  →  dom  𝑆  ∈  dom  𝑧 ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  dom  𝑆  ∈  dom  𝑧 ) | 
						
							| 52 |  | simplr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  ( 𝑈 ‘ dom  𝑆 )  =  1o ) | 
						
							| 53 |  | simprr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  ( 𝑧 ‘ dom  𝑆 )  =  1o ) | 
						
							| 54 | 52 53 | eqtr4d | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  ( 𝑈 ‘ dom  𝑆 )  =  ( 𝑧 ‘ dom  𝑆 ) ) | 
						
							| 55 |  | eqfunressuc | ⊢ ( ( ( Fun  𝑈  ∧  Fun  𝑧 )  ∧  ( 𝑈  ↾  dom  𝑆 )  =  ( 𝑧  ↾  dom  𝑆 )  ∧  ( dom  𝑆  ∈  dom  𝑈  ∧  dom  𝑆  ∈  dom  𝑧  ∧  ( 𝑈 ‘ dom  𝑆 )  =  ( 𝑧 ‘ dom  𝑆 ) ) )  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) | 
						
							| 56 | 26 32 41 43 51 54 55 | syl213anc | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) | 
						
							| 57 | 56 | expr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ( ( 𝑧 ‘ dom  𝑆 )  =  1o  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) | 
						
							| 58 | 57 | expr | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  𝑧  ∈  𝐴 )  →  ( ¬  𝑧  <s  𝑈  →  ( ( 𝑧 ‘ dom  𝑆 )  =  1o  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 59 | 58 | a2d | ⊢ ( ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  ∧  𝑧  ∈  𝐴 )  →  ( ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  →  ( ¬  𝑧  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 60 | 59 | ralimdva | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  →  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 61 | 60 | impcom | ⊢ ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o ) )  →  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) | 
						
							| 62 | 61 | anassrs | ⊢ ( ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) | 
						
							| 63 |  | dmeq | ⊢ ( 𝑝  =  𝑈  →  dom  𝑝  =  dom  𝑈 ) | 
						
							| 64 | 63 | eleq2d | ⊢ ( 𝑝  =  𝑈  →  ( dom  𝑆  ∈  dom  𝑝  ↔  dom  𝑆  ∈  dom  𝑈 ) ) | 
						
							| 65 |  | breq2 | ⊢ ( 𝑝  =  𝑈  →  ( 𝑧  <s  𝑝  ↔  𝑧  <s  𝑈 ) ) | 
						
							| 66 | 65 | notbid | ⊢ ( 𝑝  =  𝑈  →  ( ¬  𝑧  <s  𝑝  ↔  ¬  𝑧  <s  𝑈 ) ) | 
						
							| 67 |  | reseq1 | ⊢ ( 𝑝  =  𝑈  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑈  ↾  suc  dom  𝑆 ) ) | 
						
							| 68 | 67 | eqeq1d | ⊢ ( 𝑝  =  𝑈  →  ( ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 )  ↔  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) | 
						
							| 69 | 66 68 | imbi12d | ⊢ ( 𝑝  =  𝑈  →  ( ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) )  ↔  ( ¬  𝑧  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 70 | 69 | ralbidv | ⊢ ( 𝑝  =  𝑈  →  ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) )  ↔  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 71 | 64 70 | anbi12d | ⊢ ( 𝑝  =  𝑈  →  ( ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) )  ↔  ( dom  𝑆  ∈  dom  𝑈  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) ) | 
						
							| 72 | 71 | rspcev | ⊢ ( ( 𝑈  ∈  𝐴  ∧  ( dom  𝑆  ∈  dom  𝑈  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑈  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) )  →  ∃ 𝑝  ∈  𝐴 ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 73 | 9 19 62 72 | syl12anc | ⊢ ( ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  ∃ 𝑝  ∈  𝐴 ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 74 |  | simplr1 | ⊢ ( ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) | 
						
							| 75 | 1 | nosupdm | ⊢ ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  →  dom  𝑆  =  { 𝑎  ∣  ∃ 𝑝  ∈  𝐴 ( 𝑎  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  𝑎 )  =  ( 𝑧  ↾  suc  𝑎 ) ) ) } ) | 
						
							| 76 | 75 | eleq2d | ⊢ ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  →  ( dom  𝑆  ∈  dom  𝑆  ↔  dom  𝑆  ∈  { 𝑎  ∣  ∃ 𝑝  ∈  𝐴 ( 𝑎  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  𝑎 )  =  ( 𝑧  ↾  suc  𝑎 ) ) ) } ) ) | 
						
							| 77 | 74 76 | syl | ⊢ ( ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  ( dom  𝑆  ∈  dom  𝑆  ↔  dom  𝑆  ∈  { 𝑎  ∣  ∃ 𝑝  ∈  𝐴 ( 𝑎  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  𝑎 )  =  ( 𝑧  ↾  suc  𝑎 ) ) ) } ) ) | 
						
							| 78 | 4 | adantr | ⊢ ( ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  𝑆  ∈   No  ) | 
						
							| 79 |  | nodmon | ⊢ ( 𝑆  ∈   No   →  dom  𝑆  ∈  On ) | 
						
							| 80 |  | eleq1 | ⊢ ( 𝑎  =  dom  𝑆  →  ( 𝑎  ∈  dom  𝑝  ↔  dom  𝑆  ∈  dom  𝑝 ) ) | 
						
							| 81 |  | suceq | ⊢ ( 𝑎  =  dom  𝑆  →  suc  𝑎  =  suc  dom  𝑆 ) | 
						
							| 82 | 81 | reseq2d | ⊢ ( 𝑎  =  dom  𝑆  →  ( 𝑝  ↾  suc  𝑎 )  =  ( 𝑝  ↾  suc  dom  𝑆 ) ) | 
						
							| 83 | 81 | reseq2d | ⊢ ( 𝑎  =  dom  𝑆  →  ( 𝑧  ↾  suc  𝑎 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) | 
						
							| 84 | 82 83 | eqeq12d | ⊢ ( 𝑎  =  dom  𝑆  →  ( ( 𝑝  ↾  suc  𝑎 )  =  ( 𝑧  ↾  suc  𝑎 )  ↔  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) | 
						
							| 85 | 84 | imbi2d | ⊢ ( 𝑎  =  dom  𝑆  →  ( ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  𝑎 )  =  ( 𝑧  ↾  suc  𝑎 ) )  ↔  ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 86 | 85 | ralbidv | ⊢ ( 𝑎  =  dom  𝑆  →  ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  𝑎 )  =  ( 𝑧  ↾  suc  𝑎 ) )  ↔  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) | 
						
							| 87 | 80 86 | anbi12d | ⊢ ( 𝑎  =  dom  𝑆  →  ( ( 𝑎  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  𝑎 )  =  ( 𝑧  ↾  suc  𝑎 ) ) )  ↔  ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) ) | 
						
							| 88 | 87 | rexbidv | ⊢ ( 𝑎  =  dom  𝑆  →  ( ∃ 𝑝  ∈  𝐴 ( 𝑎  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  𝑎 )  =  ( 𝑧  ↾  suc  𝑎 ) ) )  ↔  ∃ 𝑝  ∈  𝐴 ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) ) | 
						
							| 89 | 88 | elabg | ⊢ ( dom  𝑆  ∈  On  →  ( dom  𝑆  ∈  { 𝑎  ∣  ∃ 𝑝  ∈  𝐴 ( 𝑎  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  𝑎 )  =  ( 𝑧  ↾  suc  𝑎 ) ) ) }  ↔  ∃ 𝑝  ∈  𝐴 ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) ) | 
						
							| 90 | 78 79 89 | 3syl | ⊢ ( ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  ( dom  𝑆  ∈  { 𝑎  ∣  ∃ 𝑝  ∈  𝐴 ( 𝑎  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  𝑎 )  =  ( 𝑧  ↾  suc  𝑎 ) ) ) }  ↔  ∃ 𝑝  ∈  𝐴 ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) ) | 
						
							| 91 | 77 90 | bitrd | ⊢ ( ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  ( dom  𝑆  ∈  dom  𝑆  ↔  ∃ 𝑝  ∈  𝐴 ( dom  𝑆  ∈  dom  𝑝  ∧  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑝  →  ( 𝑝  ↾  suc  dom  𝑆 )  =  ( 𝑧  ↾  suc  dom  𝑆 ) ) ) ) ) | 
						
							| 92 | 73 91 | mpbird | ⊢ ( ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  ∧  ( 𝑈 ‘ dom  𝑆 )  =  1o )  →  dom  𝑆  ∈  dom  𝑆 ) | 
						
							| 93 | 7 92 | mtand | ⊢ ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  →  ¬  ( 𝑈 ‘ dom  𝑆 )  =  1o ) | 
						
							| 94 | 93 | neqned | ⊢ ( ( ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  →  ( 𝑈 ‘ dom  𝑆 )  ≠  1o ) | 
						
							| 95 |  | rexanali | ⊢ ( ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  ∧  ¬  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ↔  ¬  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o ) ) | 
						
							| 96 |  | simpl | ⊢ ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  →  𝑧  ∈  𝐴 ) | 
						
							| 97 | 20 96 29 | syl2an | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  𝑧  ∈   No  ) | 
						
							| 98 |  | nofv | ⊢ ( 𝑧  ∈   No   →  ( ( 𝑧 ‘ dom  𝑆 )  =  ∅  ∨  ( 𝑧 ‘ dom  𝑆 )  =  1o  ∨  ( 𝑧 ‘ dom  𝑆 )  =  2o ) ) | 
						
							| 99 | 97 98 | syl | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ( ( 𝑧 ‘ dom  𝑆 )  =  ∅  ∨  ( 𝑧 ‘ dom  𝑆 )  =  1o  ∨  ( 𝑧 ‘ dom  𝑆 )  =  2o ) ) | 
						
							| 100 |  | 3orel2 | ⊢ ( ¬  ( 𝑧 ‘ dom  𝑆 )  =  1o  →  ( ( ( 𝑧 ‘ dom  𝑆 )  =  ∅  ∨  ( 𝑧 ‘ dom  𝑆 )  =  1o  ∨  ( 𝑧 ‘ dom  𝑆 )  =  2o )  →  ( ( 𝑧 ‘ dom  𝑆 )  =  ∅  ∨  ( 𝑧 ‘ dom  𝑆 )  =  2o ) ) ) | 
						
							| 101 | 99 100 | syl5com | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ( ¬  ( 𝑧 ‘ dom  𝑆 )  =  1o  →  ( ( 𝑧 ‘ dom  𝑆 )  =  ∅  ∨  ( 𝑧 ‘ dom  𝑆 )  =  2o ) ) ) | 
						
							| 102 | 101 | imdistanda | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ¬  ( 𝑧 ‘ dom  𝑆 )  =  1o )  →  ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( ( 𝑧 ‘ dom  𝑆 )  =  ∅  ∨  ( 𝑧 ‘ dom  𝑆 )  =  2o ) ) ) ) | 
						
							| 103 |  | simpl1 | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦 ) | 
						
							| 104 |  | simpl2 | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V ) ) | 
						
							| 105 |  | simprl | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 106 |  | simpl3 | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) | 
						
							| 107 |  | simpr | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) ) | 
						
							| 108 | 103 104 106 107 39 | syl112anc | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ( 𝑧  ↾  dom  𝑆 )  =  𝑆 ) | 
						
							| 109 | 1 | nosupbnd1lem4 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝑧  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( 𝑧 ‘ dom  𝑆 )  ≠  ∅ ) | 
						
							| 110 | 103 104 105 108 109 | syl112anc | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ( 𝑧 ‘ dom  𝑆 )  ≠  ∅ ) | 
						
							| 111 | 110 | neneqd | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ¬  ( 𝑧 ‘ dom  𝑆 )  =  ∅ ) | 
						
							| 112 | 111 | pm2.21d | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ( ( 𝑧 ‘ dom  𝑆 )  =  ∅  →  ( 𝑈 ‘ dom  𝑆 )  ≠  1o ) ) | 
						
							| 113 | 1 | nosupbnd1lem3 | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝑧  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( 𝑧 ‘ dom  𝑆 )  ≠  2o ) | 
						
							| 114 | 103 104 105 108 113 | syl112anc | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ( 𝑧 ‘ dom  𝑆 )  ≠  2o ) | 
						
							| 115 | 114 | neneqd | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ¬  ( 𝑧 ‘ dom  𝑆 )  =  2o ) | 
						
							| 116 | 115 | pm2.21d | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ( ( 𝑧 ‘ dom  𝑆 )  =  2o  →  ( 𝑈 ‘ dom  𝑆 )  ≠  1o ) ) | 
						
							| 117 | 112 116 | jaod | ⊢ ( ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 ) )  →  ( ( ( 𝑧 ‘ dom  𝑆 )  =  ∅  ∨  ( 𝑧 ‘ dom  𝑆 )  =  2o )  →  ( 𝑈 ‘ dom  𝑆 )  ≠  1o ) ) | 
						
							| 118 | 117 | expimpd | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ( ( 𝑧 ‘ dom  𝑆 )  =  ∅  ∨  ( 𝑧 ‘ dom  𝑆 )  =  2o ) )  →  ( 𝑈 ‘ dom  𝑆 )  ≠  1o ) ) | 
						
							| 119 | 102 118 | syldc | ⊢ ( ( ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  <s  𝑈 )  ∧  ¬  ( 𝑧 ‘ dom  𝑆 )  =  1o )  →  ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( 𝑈 ‘ dom  𝑆 )  ≠  1o ) ) | 
						
							| 120 | 119 | anasss | ⊢ ( ( 𝑧  ∈  𝐴  ∧  ( ¬  𝑧  <s  𝑈  ∧  ¬  ( 𝑧 ‘ dom  𝑆 )  =  1o ) )  →  ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( 𝑈 ‘ dom  𝑆 )  ≠  1o ) ) | 
						
							| 121 | 120 | rexlimiva | ⊢ ( ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  ∧  ¬  ( 𝑧 ‘ dom  𝑆 )  =  1o )  →  ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( 𝑈 ‘ dom  𝑆 )  ≠  1o ) ) | 
						
							| 122 | 121 | imp | ⊢ ( ( ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  ∧  ¬  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  →  ( 𝑈 ‘ dom  𝑆 )  ≠  1o ) | 
						
							| 123 | 95 122 | sylanbr | ⊢ ( ( ¬  ∀ 𝑧  ∈  𝐴 ( ¬  𝑧  <s  𝑈  →  ( 𝑧 ‘ dom  𝑆 )  =  1o )  ∧  ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) ) )  →  ( 𝑈 ‘ dom  𝑆 )  ≠  1o ) | 
						
							| 124 | 94 123 | pm2.61ian | ⊢ ( ( ¬  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <s  𝑦  ∧  ( 𝐴  ⊆   No   ∧  𝐴  ∈  V )  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑈  ↾  dom  𝑆 )  =  𝑆 ) )  →  ( 𝑈 ‘ dom  𝑆 )  ≠  1o ) |