Step |
Hyp |
Ref |
Expression |
1 |
|
nosupbnd1.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
1
|
nosupno |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → 𝑆 ∈ No ) |
3 |
2
|
3ad2ant2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → 𝑆 ∈ No ) |
4 |
3
|
adantl |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) → 𝑆 ∈ No ) |
5 |
|
nodmord |
⊢ ( 𝑆 ∈ No → Ord dom 𝑆 ) |
6 |
|
ordirr |
⊢ ( Ord dom 𝑆 → ¬ dom 𝑆 ∈ dom 𝑆 ) |
7 |
4 5 6
|
3syl |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) → ¬ dom 𝑆 ∈ dom 𝑆 ) |
8 |
|
simpr3l |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) → 𝑈 ∈ 𝐴 ) |
9 |
8
|
adantr |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → 𝑈 ∈ 𝐴 ) |
10 |
|
ndmfv |
⊢ ( ¬ dom 𝑆 ∈ dom 𝑈 → ( 𝑈 ‘ dom 𝑆 ) = ∅ ) |
11 |
|
1oex |
⊢ 1o ∈ V |
12 |
11
|
prid1 |
⊢ 1o ∈ { 1o , 2o } |
13 |
12
|
nosgnn0i |
⊢ ∅ ≠ 1o |
14 |
|
neeq1 |
⊢ ( ( 𝑈 ‘ dom 𝑆 ) = ∅ → ( ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ↔ ∅ ≠ 1o ) ) |
15 |
13 14
|
mpbiri |
⊢ ( ( 𝑈 ‘ dom 𝑆 ) = ∅ → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) |
16 |
15
|
neneqd |
⊢ ( ( 𝑈 ‘ dom 𝑆 ) = ∅ → ¬ ( 𝑈 ‘ dom 𝑆 ) = 1o ) |
17 |
10 16
|
syl |
⊢ ( ¬ dom 𝑆 ∈ dom 𝑈 → ¬ ( 𝑈 ‘ dom 𝑆 ) = 1o ) |
18 |
17
|
con4i |
⊢ ( ( 𝑈 ‘ dom 𝑆 ) = 1o → dom 𝑆 ∈ dom 𝑈 ) |
19 |
18
|
adantl |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → dom 𝑆 ∈ dom 𝑈 ) |
20 |
|
simp2l |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → 𝐴 ⊆ No ) |
21 |
|
simp3l |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → 𝑈 ∈ 𝐴 ) |
22 |
20 21
|
sseldd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → 𝑈 ∈ No ) |
23 |
22
|
adantr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → 𝑈 ∈ No ) |
24 |
23
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → 𝑈 ∈ No ) |
25 |
|
nofun |
⊢ ( 𝑈 ∈ No → Fun 𝑈 ) |
26 |
24 25
|
syl |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → Fun 𝑈 ) |
27 |
|
simpl2l |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → 𝐴 ⊆ No ) |
28 |
|
simpll |
⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) → 𝑧 ∈ 𝐴 ) |
29 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ No ) |
30 |
27 28 29
|
syl2an |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → 𝑧 ∈ No ) |
31 |
|
nofun |
⊢ ( 𝑧 ∈ No → Fun 𝑧 ) |
32 |
30 31
|
syl |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → Fun 𝑧 ) |
33 |
|
simpl3r |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) |
34 |
33
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) |
35 |
|
simpll1 |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
36 |
|
simpll2 |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
37 |
|
simpll3 |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) |
38 |
|
simprl |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) |
39 |
1
|
nosupbnd1lem2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) ) → ( 𝑧 ↾ dom 𝑆 ) = 𝑆 ) |
40 |
35 36 37 38 39
|
syl112anc |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → ( 𝑧 ↾ dom 𝑆 ) = 𝑆 ) |
41 |
34 40
|
eqtr4d |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → ( 𝑈 ↾ dom 𝑆 ) = ( 𝑧 ↾ dom 𝑆 ) ) |
42 |
18
|
adantl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → dom 𝑆 ∈ dom 𝑈 ) |
43 |
42
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → dom 𝑆 ∈ dom 𝑈 ) |
44 |
|
ndmfv |
⊢ ( ¬ dom 𝑆 ∈ dom 𝑧 → ( 𝑧 ‘ dom 𝑆 ) = ∅ ) |
45 |
|
neeq1 |
⊢ ( ( 𝑧 ‘ dom 𝑆 ) = ∅ → ( ( 𝑧 ‘ dom 𝑆 ) ≠ 1o ↔ ∅ ≠ 1o ) ) |
46 |
13 45
|
mpbiri |
⊢ ( ( 𝑧 ‘ dom 𝑆 ) = ∅ → ( 𝑧 ‘ dom 𝑆 ) ≠ 1o ) |
47 |
46
|
neneqd |
⊢ ( ( 𝑧 ‘ dom 𝑆 ) = ∅ → ¬ ( 𝑧 ‘ dom 𝑆 ) = 1o ) |
48 |
44 47
|
syl |
⊢ ( ¬ dom 𝑆 ∈ dom 𝑧 → ¬ ( 𝑧 ‘ dom 𝑆 ) = 1o ) |
49 |
48
|
con4i |
⊢ ( ( 𝑧 ‘ dom 𝑆 ) = 1o → dom 𝑆 ∈ dom 𝑧 ) |
50 |
49
|
adantl |
⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) → dom 𝑆 ∈ dom 𝑧 ) |
51 |
50
|
adantl |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → dom 𝑆 ∈ dom 𝑧 ) |
52 |
|
simplr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → ( 𝑈 ‘ dom 𝑆 ) = 1o ) |
53 |
|
simprr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → ( 𝑧 ‘ dom 𝑆 ) = 1o ) |
54 |
52 53
|
eqtr4d |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → ( 𝑈 ‘ dom 𝑆 ) = ( 𝑧 ‘ dom 𝑆 ) ) |
55 |
|
eqfunressuc |
⊢ ( ( ( Fun 𝑈 ∧ Fun 𝑧 ) ∧ ( 𝑈 ↾ dom 𝑆 ) = ( 𝑧 ↾ dom 𝑆 ) ∧ ( dom 𝑆 ∈ dom 𝑈 ∧ dom 𝑆 ∈ dom 𝑧 ∧ ( 𝑈 ‘ dom 𝑆 ) = ( 𝑧 ‘ dom 𝑆 ) ) ) → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) |
56 |
26 32 41 43 51 54 55
|
syl213anc |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) |
57 |
56
|
expr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ( ( 𝑧 ‘ dom 𝑆 ) = 1o → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) |
58 |
57
|
expr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ 𝑧 ∈ 𝐴 ) → ( ¬ 𝑧 <s 𝑈 → ( ( 𝑧 ‘ dom 𝑆 ) = 1o → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) |
59 |
58
|
a2d |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) → ( ¬ 𝑧 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) |
60 |
59
|
ralimdva |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) → ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) |
61 |
60
|
impcom |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) ) → ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) |
62 |
61
|
anassrs |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) |
63 |
|
dmeq |
⊢ ( 𝑝 = 𝑈 → dom 𝑝 = dom 𝑈 ) |
64 |
63
|
eleq2d |
⊢ ( 𝑝 = 𝑈 → ( dom 𝑆 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑈 ) ) |
65 |
|
breq2 |
⊢ ( 𝑝 = 𝑈 → ( 𝑧 <s 𝑝 ↔ 𝑧 <s 𝑈 ) ) |
66 |
65
|
notbid |
⊢ ( 𝑝 = 𝑈 → ( ¬ 𝑧 <s 𝑝 ↔ ¬ 𝑧 <s 𝑈 ) ) |
67 |
|
reseq1 |
⊢ ( 𝑝 = 𝑈 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑈 ↾ suc dom 𝑆 ) ) |
68 |
67
|
eqeq1d |
⊢ ( 𝑝 = 𝑈 → ( ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ↔ ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) |
69 |
66 68
|
imbi12d |
⊢ ( 𝑝 = 𝑈 → ( ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ↔ ( ¬ 𝑧 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) |
70 |
69
|
ralbidv |
⊢ ( 𝑝 = 𝑈 → ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) |
71 |
64 70
|
anbi12d |
⊢ ( 𝑝 = 𝑈 → ( ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ↔ ( dom 𝑆 ∈ dom 𝑈 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) ) |
72 |
71
|
rspcev |
⊢ ( ( 𝑈 ∈ 𝐴 ∧ ( dom 𝑆 ∈ dom 𝑈 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) → ∃ 𝑝 ∈ 𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) |
73 |
9 19 62 72
|
syl12anc |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → ∃ 𝑝 ∈ 𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) |
74 |
|
simplr1 |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
75 |
1
|
nosupdm |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = { 𝑎 ∣ ∃ 𝑝 ∈ 𝐴 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) } ) |
76 |
75
|
eleq2d |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ( dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐴 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) } ) ) |
77 |
74 76
|
syl |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → ( dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐴 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) } ) ) |
78 |
4
|
adantr |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → 𝑆 ∈ No ) |
79 |
|
nodmon |
⊢ ( 𝑆 ∈ No → dom 𝑆 ∈ On ) |
80 |
|
eleq1 |
⊢ ( 𝑎 = dom 𝑆 → ( 𝑎 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑝 ) ) |
81 |
|
suceq |
⊢ ( 𝑎 = dom 𝑆 → suc 𝑎 = suc dom 𝑆 ) |
82 |
81
|
reseq2d |
⊢ ( 𝑎 = dom 𝑆 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑝 ↾ suc dom 𝑆 ) ) |
83 |
81
|
reseq2d |
⊢ ( 𝑎 = dom 𝑆 → ( 𝑧 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) |
84 |
82 83
|
eqeq12d |
⊢ ( 𝑎 = dom 𝑆 → ( ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ↔ ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) |
85 |
84
|
imbi2d |
⊢ ( 𝑎 = dom 𝑆 → ( ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ↔ ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) |
86 |
85
|
ralbidv |
⊢ ( 𝑎 = dom 𝑆 → ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) |
87 |
80 86
|
anbi12d |
⊢ ( 𝑎 = dom 𝑆 → ( ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) ↔ ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) ) |
88 |
87
|
rexbidv |
⊢ ( 𝑎 = dom 𝑆 → ( ∃ 𝑝 ∈ 𝐴 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) ↔ ∃ 𝑝 ∈ 𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) ) |
89 |
88
|
elabg |
⊢ ( dom 𝑆 ∈ On → ( dom 𝑆 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐴 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) } ↔ ∃ 𝑝 ∈ 𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) ) |
90 |
78 79 89
|
3syl |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → ( dom 𝑆 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐴 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) } ↔ ∃ 𝑝 ∈ 𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) ) |
91 |
77 90
|
bitrd |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → ( dom 𝑆 ∈ dom 𝑆 ↔ ∃ 𝑝 ∈ 𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑧 ↾ suc dom 𝑆 ) ) ) ) ) |
92 |
73 91
|
mpbird |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 1o ) → dom 𝑆 ∈ dom 𝑆 ) |
93 |
7 92
|
mtand |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) → ¬ ( 𝑈 ‘ dom 𝑆 ) = 1o ) |
94 |
93
|
neqned |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) |
95 |
|
rexanali |
⊢ ( ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 ∧ ¬ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ↔ ¬ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) |
96 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) → 𝑧 ∈ 𝐴 ) |
97 |
20 96 29
|
syl2an |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → 𝑧 ∈ No ) |
98 |
|
nofv |
⊢ ( 𝑧 ∈ No → ( ( 𝑧 ‘ dom 𝑆 ) = ∅ ∨ ( 𝑧 ‘ dom 𝑆 ) = 1o ∨ ( 𝑧 ‘ dom 𝑆 ) = 2o ) ) |
99 |
97 98
|
syl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ( ( 𝑧 ‘ dom 𝑆 ) = ∅ ∨ ( 𝑧 ‘ dom 𝑆 ) = 1o ∨ ( 𝑧 ‘ dom 𝑆 ) = 2o ) ) |
100 |
|
3orel2 |
⊢ ( ¬ ( 𝑧 ‘ dom 𝑆 ) = 1o → ( ( ( 𝑧 ‘ dom 𝑆 ) = ∅ ∨ ( 𝑧 ‘ dom 𝑆 ) = 1o ∨ ( 𝑧 ‘ dom 𝑆 ) = 2o ) → ( ( 𝑧 ‘ dom 𝑆 ) = ∅ ∨ ( 𝑧 ‘ dom 𝑆 ) = 2o ) ) ) |
101 |
99 100
|
syl5com |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ( ¬ ( 𝑧 ‘ dom 𝑆 ) = 1o → ( ( 𝑧 ‘ dom 𝑆 ) = ∅ ∨ ( 𝑧 ‘ dom 𝑆 ) = 2o ) ) ) |
102 |
101
|
imdistanda |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ¬ ( 𝑧 ‘ dom 𝑆 ) = 1o ) → ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( ( 𝑧 ‘ dom 𝑆 ) = ∅ ∨ ( 𝑧 ‘ dom 𝑆 ) = 2o ) ) ) ) |
103 |
|
simpl1 |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
104 |
|
simpl2 |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
105 |
|
simprl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → 𝑧 ∈ 𝐴 ) |
106 |
|
simpl3 |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) |
107 |
|
simpr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) |
108 |
103 104 106 107 39
|
syl112anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ( 𝑧 ↾ dom 𝑆 ) = 𝑆 ) |
109 |
1
|
nosupbnd1lem4 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑧 ‘ dom 𝑆 ) ≠ ∅ ) |
110 |
103 104 105 108 109
|
syl112anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ( 𝑧 ‘ dom 𝑆 ) ≠ ∅ ) |
111 |
110
|
neneqd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ¬ ( 𝑧 ‘ dom 𝑆 ) = ∅ ) |
112 |
111
|
pm2.21d |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ( ( 𝑧 ‘ dom 𝑆 ) = ∅ → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) ) |
113 |
1
|
nosupbnd1lem3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑧 ‘ dom 𝑆 ) ≠ 2o ) |
114 |
103 104 105 108 113
|
syl112anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ( 𝑧 ‘ dom 𝑆 ) ≠ 2o ) |
115 |
114
|
neneqd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ¬ ( 𝑧 ‘ dom 𝑆 ) = 2o ) |
116 |
115
|
pm2.21d |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ( ( 𝑧 ‘ dom 𝑆 ) = 2o → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) ) |
117 |
112 116
|
jaod |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ) → ( ( ( 𝑧 ‘ dom 𝑆 ) = ∅ ∨ ( 𝑧 ‘ dom 𝑆 ) = 2o ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) ) |
118 |
117
|
expimpd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ( ( 𝑧 ‘ dom 𝑆 ) = ∅ ∨ ( 𝑧 ‘ dom 𝑆 ) = 2o ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) ) |
119 |
102 118
|
syldc |
⊢ ( ( ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈 ) ∧ ¬ ( 𝑧 ‘ dom 𝑆 ) = 1o ) → ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) ) |
120 |
119
|
anasss |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 <s 𝑈 ∧ ¬ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ) → ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) ) |
121 |
120
|
rexlimiva |
⊢ ( ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 ∧ ¬ ( 𝑧 ‘ dom 𝑆 ) = 1o ) → ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) ) |
122 |
121
|
imp |
⊢ ( ( ∃ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 ∧ ¬ ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) |
123 |
95 122
|
sylanbr |
⊢ ( ( ¬ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑧 <s 𝑈 → ( 𝑧 ‘ dom 𝑆 ) = 1o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) |
124 |
94 123
|
pm2.61ian |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 1o ) |