Metamath Proof Explorer


Theorem nosupbnd1lem5

Description: Lemma for nosupbnd1 . If U is a prolongment of S and in A , then ( Udom S ) is not 1o . (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Hypothesis nosupbnd1.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
Assertion nosupbnd1lem5 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 1 𝑜

Proof

Step Hyp Ref Expression
1 nosupbnd1.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
2 1 nosupno A No A V S No
3 2 3ad2ant2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S S No
4 3 adantl z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S S No
5 nodmord S No Ord dom S
6 ordirr Ord dom S ¬ dom S dom S
7 4 5 6 3syl z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S ¬ dom S dom S
8 simpr3l z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U A
9 8 adantr z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 U A
10 ndmfv ¬ dom S dom U U dom S =
11 1oex 1 𝑜 V
12 11 prid1 1 𝑜 1 𝑜 2 𝑜
13 12 nosgnn0i 1 𝑜
14 neeq1 U dom S = U dom S 1 𝑜 1 𝑜
15 13 14 mpbiri U dom S = U dom S 1 𝑜
16 15 neneqd U dom S = ¬ U dom S = 1 𝑜
17 10 16 syl ¬ dom S dom U ¬ U dom S = 1 𝑜
18 17 con4i U dom S = 1 𝑜 dom S dom U
19 18 adantl z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 dom S dom U
20 simp2l ¬ x A y A ¬ x < s y A No A V U A U dom S = S A No
21 simp3l ¬ x A y A ¬ x < s y A No A V U A U dom S = S U A
22 20 21 sseldd ¬ x A y A ¬ x < s y A No A V U A U dom S = S U No
23 22 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 U No
24 23 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 U No
25 nofun U No Fun U
26 24 25 syl ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 Fun U
27 simpl2l ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 A No
28 simpll z A ¬ z < s U z dom S = 1 𝑜 z A
29 ssel2 A No z A z No
30 27 28 29 syl2an ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 z No
31 nofun z No Fun z
32 30 31 syl ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 Fun z
33 simpl3r ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 U dom S = S
34 33 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 U dom S = S
35 simpll1 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y
36 simpll2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 A No A V
37 simpll3 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 U A U dom S = S
38 simprl ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 z A ¬ z < s U
39 1 nosupbnd1lem2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U z dom S = S
40 35 36 37 38 39 syl112anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 z dom S = S
41 34 40 eqtr4d ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 U dom S = z dom S
42 18 adantl ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 dom S dom U
43 42 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 dom S dom U
44 ndmfv ¬ dom S dom z z dom S =
45 neeq1 z dom S = z dom S 1 𝑜 1 𝑜
46 13 45 mpbiri z dom S = z dom S 1 𝑜
47 46 neneqd z dom S = ¬ z dom S = 1 𝑜
48 44 47 syl ¬ dom S dom z ¬ z dom S = 1 𝑜
49 48 con4i z dom S = 1 𝑜 dom S dom z
50 49 adantl z A ¬ z < s U z dom S = 1 𝑜 dom S dom z
51 50 adantl ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 dom S dom z
52 simplr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 U dom S = 1 𝑜
53 simprr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 z dom S = 1 𝑜
54 52 53 eqtr4d ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 U dom S = z dom S
55 eqfunressuc Fun U Fun z U dom S = z dom S dom S dom U dom S dom z U dom S = z dom S U suc dom S = z suc dom S
56 26 32 41 43 51 54 55 syl213anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 U suc dom S = z suc dom S
57 56 expr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 U suc dom S = z suc dom S
58 57 expr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 U suc dom S = z suc dom S
59 58 a2d ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 ¬ z < s U U suc dom S = z suc dom S
60 59 ralimdva ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U z dom S = 1 𝑜 z A ¬ z < s U U suc dom S = z suc dom S
61 60 impcom z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U U suc dom S = z suc dom S
62 61 anassrs z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 z A ¬ z < s U U suc dom S = z suc dom S
63 dmeq p = U dom p = dom U
64 63 eleq2d p = U dom S dom p dom S dom U
65 breq2 p = U z < s p z < s U
66 65 notbid p = U ¬ z < s p ¬ z < s U
67 reseq1 p = U p suc dom S = U suc dom S
68 67 eqeq1d p = U p suc dom S = z suc dom S U suc dom S = z suc dom S
69 66 68 imbi12d p = U ¬ z < s p p suc dom S = z suc dom S ¬ z < s U U suc dom S = z suc dom S
70 69 ralbidv p = U z A ¬ z < s p p suc dom S = z suc dom S z A ¬ z < s U U suc dom S = z suc dom S
71 64 70 anbi12d p = U dom S dom p z A ¬ z < s p p suc dom S = z suc dom S dom S dom U z A ¬ z < s U U suc dom S = z suc dom S
72 71 rspcev U A dom S dom U z A ¬ z < s U U suc dom S = z suc dom S p A dom S dom p z A ¬ z < s p p suc dom S = z suc dom S
73 9 19 62 72 syl12anc z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 p A dom S dom p z A ¬ z < s p p suc dom S = z suc dom S
74 simplr1 z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 ¬ x A y A ¬ x < s y
75 1 nosupdm ¬ x A y A ¬ x < s y dom S = a | p A a dom p z A ¬ z < s p p suc a = z suc a
76 75 eleq2d ¬ x A y A ¬ x < s y dom S dom S dom S a | p A a dom p z A ¬ z < s p p suc a = z suc a
77 74 76 syl z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 dom S dom S dom S a | p A a dom p z A ¬ z < s p p suc a = z suc a
78 4 adantr z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 S No
79 nodmon S No dom S On
80 eleq1 a = dom S a dom p dom S dom p
81 suceq a = dom S suc a = suc dom S
82 81 reseq2d a = dom S p suc a = p suc dom S
83 81 reseq2d a = dom S z suc a = z suc dom S
84 82 83 eqeq12d a = dom S p suc a = z suc a p suc dom S = z suc dom S
85 84 imbi2d a = dom S ¬ z < s p p suc a = z suc a ¬ z < s p p suc dom S = z suc dom S
86 85 ralbidv a = dom S z A ¬ z < s p p suc a = z suc a z A ¬ z < s p p suc dom S = z suc dom S
87 80 86 anbi12d a = dom S a dom p z A ¬ z < s p p suc a = z suc a dom S dom p z A ¬ z < s p p suc dom S = z suc dom S
88 87 rexbidv a = dom S p A a dom p z A ¬ z < s p p suc a = z suc a p A dom S dom p z A ¬ z < s p p suc dom S = z suc dom S
89 88 elabg dom S On dom S a | p A a dom p z A ¬ z < s p p suc a = z suc a p A dom S dom p z A ¬ z < s p p suc dom S = z suc dom S
90 78 79 89 3syl z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 dom S a | p A a dom p z A ¬ z < s p p suc a = z suc a p A dom S dom p z A ¬ z < s p p suc dom S = z suc dom S
91 77 90 bitrd z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 dom S dom S p A dom S dom p z A ¬ z < s p p suc dom S = z suc dom S
92 73 91 mpbird z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = 1 𝑜 dom S dom S
93 7 92 mtand z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S ¬ U dom S = 1 𝑜
94 93 neqned z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 1 𝑜
95 rexanali z A ¬ z < s U ¬ z dom S = 1 𝑜 ¬ z A ¬ z < s U z dom S = 1 𝑜
96 simpl z A ¬ z < s U z A
97 20 96 29 syl2an ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U z No
98 nofv z No z dom S = z dom S = 1 𝑜 z dom S = 2 𝑜
99 97 98 syl ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U z dom S = z dom S = 1 𝑜 z dom S = 2 𝑜
100 3orel2 ¬ z dom S = 1 𝑜 z dom S = z dom S = 1 𝑜 z dom S = 2 𝑜 z dom S = z dom S = 2 𝑜
101 99 100 syl5com ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U ¬ z dom S = 1 𝑜 z dom S = z dom S = 2 𝑜
102 101 imdistanda ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U ¬ z dom S = 1 𝑜 z A ¬ z < s U z dom S = z dom S = 2 𝑜
103 simpl1 ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U ¬ x A y A ¬ x < s y
104 simpl2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U A No A V
105 simprl ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U z A
106 simpl3 ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U U A U dom S = S
107 simpr ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U z A ¬ z < s U
108 103 104 106 107 39 syl112anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U z dom S = S
109 1 nosupbnd1lem4 ¬ x A y A ¬ x < s y A No A V z A z dom S = S z dom S
110 103 104 105 108 109 syl112anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U z dom S
111 110 neneqd ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U ¬ z dom S =
112 111 pm2.21d ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U z dom S = U dom S 1 𝑜
113 1 nosupbnd1lem3 ¬ x A y A ¬ x < s y A No A V z A z dom S = S z dom S 2 𝑜
114 103 104 105 108 113 syl112anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U z dom S 2 𝑜
115 114 neneqd ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U ¬ z dom S = 2 𝑜
116 115 pm2.21d ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U z dom S = 2 𝑜 U dom S 1 𝑜
117 112 116 jaod ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U z dom S = z dom S = 2 𝑜 U dom S 1 𝑜
118 117 expimpd ¬ x A y A ¬ x < s y A No A V U A U dom S = S z A ¬ z < s U z dom S = z dom S = 2 𝑜 U dom S 1 𝑜
119 102 118 syldc z A ¬ z < s U ¬ z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 1 𝑜
120 119 anasss z A ¬ z < s U ¬ z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 1 𝑜
121 120 rexlimiva z A ¬ z < s U ¬ z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 1 𝑜
122 121 imp z A ¬ z < s U ¬ z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 1 𝑜
123 95 122 sylanbr ¬ z A ¬ z < s U z dom S = 1 𝑜 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 1 𝑜
124 94 123 pm2.61ian ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 1 𝑜