Metamath Proof Explorer


Theorem nosupbnd1lem6

Description: Lemma for nosupbnd1 . Establish a hard upper bound when there is no maximum. (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Hypothesis nosupbnd1.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
Assertion nosupbnd1lem6 ¬ x A y A ¬ x < s y A No A V U A U dom S < s S

Proof

Step Hyp Ref Expression
1 nosupbnd1.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
2 simp2l ¬ x A y A ¬ x < s y A No A V U A A No
3 simp3 ¬ x A y A ¬ x < s y A No A V U A U A
4 2 3 sseldd ¬ x A y A ¬ x < s y A No A V U A U No
5 nofv U No U dom S = U dom S = 1 𝑜 U dom S = 2 𝑜
6 4 5 syl ¬ x A y A ¬ x < s y A No A V U A U dom S = U dom S = 1 𝑜 U dom S = 2 𝑜
7 3oran U dom S = U dom S = 1 𝑜 U dom S = 2 𝑜 ¬ ¬ U dom S = ¬ U dom S = 1 𝑜 ¬ U dom S = 2 𝑜
8 6 7 sylib ¬ x A y A ¬ x < s y A No A V U A ¬ ¬ U dom S = ¬ U dom S = 1 𝑜 ¬ U dom S = 2 𝑜
9 simpl1 ¬ x A y A ¬ x < s y A No A V U A U dom S = S ¬ x A y A ¬ x < s y
10 simpl2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S A No A V
11 simpl3 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U A
12 simpr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = S
13 1 nosupbnd1lem4 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S
14 9 10 11 12 13 syl112anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S
15 14 neneqd ¬ x A y A ¬ x < s y A No A V U A U dom S = S ¬ U dom S =
16 1 nosupbnd1lem5 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 1 𝑜
17 9 10 11 12 16 syl112anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 1 𝑜
18 17 neneqd ¬ x A y A ¬ x < s y A No A V U A U dom S = S ¬ U dom S = 1 𝑜
19 1 nosupbnd1lem3 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 2 𝑜
20 9 10 11 12 19 syl112anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S 2 𝑜
21 20 neneqd ¬ x A y A ¬ x < s y A No A V U A U dom S = S ¬ U dom S = 2 𝑜
22 15 18 21 3jca ¬ x A y A ¬ x < s y A No A V U A U dom S = S ¬ U dom S = ¬ U dom S = 1 𝑜 ¬ U dom S = 2 𝑜
23 8 22 mtand ¬ x A y A ¬ x < s y A No A V U A ¬ U dom S = S
24 1 nosupbnd1lem1 ¬ x A y A ¬ x < s y A No A V U A ¬ S < s U dom S
25 1 nosupno A No A V S No
26 25 3ad2ant2 ¬ x A y A ¬ x < s y A No A V U A S No
27 nodmon S No dom S On
28 26 27 syl ¬ x A y A ¬ x < s y A No A V U A dom S On
29 noreson U No dom S On U dom S No
30 4 28 29 syl2anc ¬ x A y A ¬ x < s y A No A V U A U dom S No
31 sltso < s Or No
32 solin < s Or No U dom S No S No U dom S < s S U dom S = S S < s U dom S
33 31 32 mpan U dom S No S No U dom S < s S U dom S = S S < s U dom S
34 30 26 33 syl2anc ¬ x A y A ¬ x < s y A No A V U A U dom S < s S U dom S = S S < s U dom S
35 23 24 34 ecase23d ¬ x A y A ¬ x < s y A No A V U A U dom S < s S