Metamath Proof Explorer


Theorem nosupbnd1lem4

Description: Lemma for nosupbnd1 . If U is a prolongment of S and in A , then ( Udom S ) is not undefined. (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Hypothesis nosupbnd1.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
Assertion nosupbnd1lem4 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S

Proof

Step Hyp Ref Expression
1 nosupbnd1.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
2 simpl1 ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w ¬ x A y A ¬ x < s y
3 simpl2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w A No A V
4 simprl ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w w A
5 simpl3 ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w U A U dom S = S
6 simprr ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w U < s w
7 simp2l ¬ x A y A ¬ x < s y A No A V U A U dom S = S A No
8 simp3l ¬ x A y A ¬ x < s y A No A V U A U dom S = S U A
9 7 8 sseldd ¬ x A y A ¬ x < s y A No A V U A U dom S = S U No
10 simpl2l ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w A No
11 10 4 sseldd ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w w No
12 sltso < s Or No
13 soasym < s Or No U No w No U < s w ¬ w < s U
14 12 13 mpan U No w No U < s w ¬ w < s U
15 9 11 14 syl2an2r ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w U < s w ¬ w < s U
16 6 15 mpd ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w ¬ w < s U
17 4 16 jca ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w w A ¬ w < s U
18 1 nosupbnd1lem2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A ¬ w < s U w dom S = S
19 2 3 5 17 18 syl112anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w w dom S = S
20 1 nosupbnd1lem3 ¬ x A y A ¬ x < s y A No A V w A w dom S = S w dom S 2 𝑜
21 2 3 4 19 20 syl112anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w w dom S 2 𝑜
22 21 neneqd ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w ¬ w dom S = 2 𝑜
23 22 expr ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A U < s w ¬ w dom S = 2 𝑜
24 imnan U < s w ¬ w dom S = 2 𝑜 ¬ U < s w w dom S = 2 𝑜
25 23 24 sylib ¬ x A y A ¬ x < s y A No A V U A U dom S = S w A ¬ U < s w w dom S = 2 𝑜
26 25 nrexdv ¬ x A y A ¬ x < s y A No A V U A U dom S = S ¬ w A U < s w w dom S = 2 𝑜
27 simpl3l ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = U A
28 simpl1 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = ¬ x A y A ¬ x < s y
29 breq2 w = y u < s w u < s y
30 29 cbvrexvw w A u < s w y A u < s y
31 breq1 u = x u < s y x < s y
32 31 rexbidv u = x y A u < s y y A x < s y
33 30 32 syl5bb u = x w A u < s w y A x < s y
34 33 cbvralvw u A w A u < s w x A y A x < s y
35 dfrex2 y A x < s y ¬ y A ¬ x < s y
36 35 ralbii x A y A x < s y x A ¬ y A ¬ x < s y
37 ralnex x A ¬ y A ¬ x < s y ¬ x A y A ¬ x < s y
38 34 36 37 3bitri u A w A u < s w ¬ x A y A ¬ x < s y
39 28 38 sylibr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = u A w A u < s w
40 breq1 u = U u < s w U < s w
41 40 rexbidv u = U w A u < s w w A U < s w
42 41 rspcv U A u A w A u < s w w A U < s w
43 27 39 42 sylc ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w
44 simpl2l ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = A No
45 44 27 sseldd ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = U No
46 45 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w U No
47 44 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w A No
48 simprl ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w w A
49 47 48 sseldd ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w w No
50 1 nosupno A No A V S No
51 50 3ad2ant2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S S No
52 51 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = S No
53 52 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w S No
54 nodmon S No dom S On
55 53 54 syl ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w dom S On
56 simpl3r ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = U dom S = S
57 56 adantr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w U dom S = S
58 simpll1 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w ¬ x A y A ¬ x < s y
59 simpll2 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w A No A V
60 simpll3 ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w U A U dom S = S
61 simprr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w U < s w
62 45 49 14 syl2an2r ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w U < s w ¬ w < s U
63 61 62 mpd ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w ¬ w < s U
64 48 63 jca ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w w A ¬ w < s U
65 58 59 60 64 18 syl112anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w w dom S = S
66 57 65 eqtr4d ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w U dom S = w dom S
67 simplr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w U dom S =
68 nolt02o U No w No dom S On U dom S = w dom S U < s w U dom S = w dom S = 2 𝑜
69 46 49 55 66 61 67 68 syl321anc ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w w dom S = 2 𝑜
70 69 expr ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w w dom S = 2 𝑜
71 70 ancld ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w U < s w w dom S = 2 𝑜
72 71 reximdva ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w w A U < s w w dom S = 2 𝑜
73 43 72 mpd ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S = w A U < s w w dom S = 2 𝑜
74 26 73 mtand ¬ x A y A ¬ x < s y A No A V U A U dom S = S ¬ U dom S =
75 74 neqned ¬ x A y A ¬ x < s y A No A V U A U dom S = S U dom S