Description: The domain of the surreal supremum when there is no maximum. The primary point of this theorem is to change bound variable. (Contributed by Scott Fenton, 6-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nosupdm.1 | |
|
Assertion | nosupdm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosupdm.1 | |
|
2 | iffalse | |
|
3 | 1 2 | eqtrid | |
4 | 3 | dmeqd | |
5 | iotaex | |
|
6 | eqid | |
|
7 | 5 6 | dmmpti | |
8 | 4 7 | eqtrdi | |
9 | dmeq | |
|
10 | 9 | eleq2d | |
11 | breq1 | |
|
12 | 11 | notbid | |
13 | reseq1 | |
|
14 | 13 | eqeq2d | |
15 | 12 14 | imbi12d | |
16 | 15 | cbvralvw | |
17 | breq2 | |
|
18 | 17 | notbid | |
19 | reseq1 | |
|
20 | 19 | eqeq1d | |
21 | 18 20 | imbi12d | |
22 | 21 | ralbidv | |
23 | 16 22 | bitrid | |
24 | 10 23 | anbi12d | |
25 | 24 | cbvrexvw | |
26 | eleq1w | |
|
27 | suceq | |
|
28 | 27 | reseq2d | |
29 | 27 | reseq2d | |
30 | 28 29 | eqeq12d | |
31 | 30 | imbi2d | |
32 | 31 | ralbidv | |
33 | 26 32 | anbi12d | |
34 | 33 | rexbidv | |
35 | 25 34 | bitrid | |
36 | 35 | cbvabv | |
37 | 8 36 | eqtrdi | |