Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005) (Proof shortened by Wolf Lammen, 27-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | rexanali | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝜑 ∧ ¬ 𝜓 ) ) | |
2 | iman | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ¬ ( 𝜑 ∧ ¬ 𝜓 ) ) | |
3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝜑 ∧ ¬ 𝜓 ) ) |
4 | 1 3 | xchbinxr | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |