Metamath Proof Explorer


Theorem rexanali

Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005) (Proof shortened by Wolf Lammen, 27-Dec-2019)

Ref Expression
Assertion rexanali ( ∃ 𝑥𝐴 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑥𝐴 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 dfrex2 ( ∃ 𝑥𝐴 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑥𝐴 ¬ ( 𝜑 ∧ ¬ 𝜓 ) )
2 iman ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑 ∧ ¬ 𝜓 ) )
3 2 ralbii ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥𝐴 ¬ ( 𝜑 ∧ ¬ 𝜓 ) )
4 1 3 xchbinxr ( ∃ 𝑥𝐴 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑥𝐴 ( 𝜑𝜓 ) )