Step |
Hyp |
Ref |
Expression |
1 |
|
simp11 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → 𝐴 ∈ No ) |
2 |
|
sltso |
⊢ <s Or No |
3 |
|
sonr |
⊢ ( ( <s Or No ∧ 𝐴 ∈ No ) → ¬ 𝐴 <s 𝐴 ) |
4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ No → ¬ 𝐴 <s 𝐴 ) |
5 |
1 4
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ¬ 𝐴 <s 𝐴 ) |
6 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → 𝐴 <s 𝐵 ) |
7 |
|
breq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 <s 𝐴 ↔ 𝐴 <s 𝐵 ) ) |
8 |
6 7
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ( 𝐴 = 𝐵 → 𝐴 <s 𝐴 ) ) |
9 |
5 8
|
mtod |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ¬ 𝐴 = 𝐵 ) |
10 |
|
simpl2l |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ) |
11 |
|
simpl11 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → 𝐴 ∈ No ) |
12 |
|
nofun |
⊢ ( 𝐴 ∈ No → Fun 𝐴 ) |
13 |
|
funrel |
⊢ ( Fun 𝐴 → Rel 𝐴 ) |
14 |
11 12 13
|
3syl |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → Rel 𝐴 ) |
15 |
|
simpl13 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → 𝑋 ∈ On ) |
16 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ( 𝐴 ‘ 𝑋 ) = ∅ ) |
17 |
|
nolt02olem |
⊢ ( ( 𝐴 ∈ No ∧ 𝑋 ∈ On ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → dom 𝐴 ⊆ 𝑋 ) |
18 |
11 15 16 17
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → dom 𝐴 ⊆ 𝑋 ) |
19 |
|
relssres |
⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝑋 ) → ( 𝐴 ↾ 𝑋 ) = 𝐴 ) |
20 |
14 18 19
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ( 𝐴 ↾ 𝑋 ) = 𝐴 ) |
21 |
|
simpl12 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → 𝐵 ∈ No ) |
22 |
|
nofun |
⊢ ( 𝐵 ∈ No → Fun 𝐵 ) |
23 |
|
funrel |
⊢ ( Fun 𝐵 → Rel 𝐵 ) |
24 |
21 22 23
|
3syl |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → Rel 𝐵 ) |
25 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ( 𝐵 ‘ 𝑋 ) = ∅ ) |
26 |
|
nolt02olem |
⊢ ( ( 𝐵 ∈ No ∧ 𝑋 ∈ On ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → dom 𝐵 ⊆ 𝑋 ) |
27 |
21 15 25 26
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → dom 𝐵 ⊆ 𝑋 ) |
28 |
|
relssres |
⊢ ( ( Rel 𝐵 ∧ dom 𝐵 ⊆ 𝑋 ) → ( 𝐵 ↾ 𝑋 ) = 𝐵 ) |
29 |
24 27 28
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ( 𝐵 ↾ 𝑋 ) = 𝐵 ) |
30 |
10 20 29
|
3eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → 𝐴 = 𝐵 ) |
31 |
9 30
|
mtand |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ¬ ( 𝐵 ‘ 𝑋 ) = ∅ ) |
32 |
|
simp12 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → 𝐵 ∈ No ) |
33 |
|
sltval |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ∧ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) ) |
34 |
1 32 33
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ( 𝐴 <s 𝐵 ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ∧ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) ) |
35 |
6 34
|
mpbid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ∧ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
36 |
|
df-an |
⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ∧ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ↔ ¬ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
37 |
36
|
rexbii |
⊢ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ∧ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ On ¬ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
38 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ On ¬ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ↔ ¬ ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
39 |
37 38
|
bitri |
⊢ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ∧ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ↔ ¬ ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
40 |
35 39
|
sylib |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ¬ ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
41 |
|
1oex |
⊢ 1o ∈ V |
42 |
41
|
prid1 |
⊢ 1o ∈ { 1o , 2o } |
43 |
42
|
nosgnn0i |
⊢ ∅ ≠ 1o |
44 |
43
|
neii |
⊢ ¬ ∅ = 1o |
45 |
|
simpll3 |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝐴 ‘ 𝑋 ) = ∅ ) |
46 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝐵 ‘ 𝑋 ) = 1o ) |
47 |
|
eqeq1 |
⊢ ( ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) → ( ( 𝐴 ‘ 𝑋 ) = ∅ ↔ ( 𝐵 ‘ 𝑋 ) = ∅ ) ) |
48 |
47
|
anbi1d |
⊢ ( ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) → ( ( ( 𝐴 ‘ 𝑋 ) = ∅ ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ↔ ( ( 𝐵 ‘ 𝑋 ) = ∅ ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ) ) |
49 |
|
eqtr2 |
⊢ ( ( ( 𝐵 ‘ 𝑋 ) = ∅ ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) → ∅ = 1o ) |
50 |
48 49
|
syl6bi |
⊢ ( ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) → ( ( ( 𝐴 ‘ 𝑋 ) = ∅ ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) → ∅ = 1o ) ) |
51 |
50
|
com12 |
⊢ ( ( ( 𝐴 ‘ 𝑋 ) = ∅ ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) → ( ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) → ∅ = 1o ) ) |
52 |
45 46 51
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) → ∅ = 1o ) ) |
53 |
44 52
|
mtoi |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ¬ ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) |
54 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) ∧ 𝑋 ∈ 𝑥 ) → 𝑋 ∈ 𝑥 ) |
55 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) ∧ 𝑋 ∈ 𝑥 ) → ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) |
56 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐴 ‘ 𝑦 ) = ( 𝐴 ‘ 𝑋 ) ) |
57 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐵 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑋 ) ) |
58 |
56 57
|
eqeq12d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ↔ ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) ) |
59 |
58
|
rspcv |
⊢ ( 𝑋 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) ) |
60 |
54 55 59
|
sylc |
⊢ ( ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) ∧ 𝑋 ∈ 𝑥 ) → ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) |
61 |
53 60
|
mtand |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ¬ 𝑋 ∈ 𝑥 ) |
62 |
|
simprl |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → 𝑥 ∈ On ) |
63 |
|
simpl13 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) → 𝑋 ∈ On ) |
64 |
63
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → 𝑋 ∈ On ) |
65 |
|
ontri1 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑋 ∈ On ) → ( 𝑥 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ 𝑥 ) ) |
66 |
62 64 65
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝑥 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ 𝑥 ) ) |
67 |
61 66
|
mpbird |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → 𝑥 ⊆ 𝑋 ) |
68 |
|
onsseleq |
⊢ ( ( 𝑥 ∈ On ∧ 𝑋 ∈ On ) → ( 𝑥 ⊆ 𝑋 ↔ ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ) ) |
69 |
62 64 68
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝑥 ⊆ 𝑋 ↔ ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ) ) |
70 |
|
eqtr2 |
⊢ ( ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ) → ∅ = 1o ) |
71 |
70
|
ancoms |
⊢ ( ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) → ∅ = 1o ) |
72 |
44 71
|
mto |
⊢ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) |
73 |
|
df-1o |
⊢ 1o = suc ∅ |
74 |
|
df-2o |
⊢ 2o = suc 1o |
75 |
73 74
|
eqeq12i |
⊢ ( 1o = 2o ↔ suc ∅ = suc 1o ) |
76 |
|
0elon |
⊢ ∅ ∈ On |
77 |
|
1on |
⊢ 1o ∈ On |
78 |
|
suc11 |
⊢ ( ( ∅ ∈ On ∧ 1o ∈ On ) → ( suc ∅ = suc 1o ↔ ∅ = 1o ) ) |
79 |
76 77 78
|
mp2an |
⊢ ( suc ∅ = suc 1o ↔ ∅ = 1o ) |
80 |
75 79
|
bitri |
⊢ ( 1o = 2o ↔ ∅ = 1o ) |
81 |
43 80
|
nemtbir |
⊢ ¬ 1o = 2o |
82 |
|
eqtr2 |
⊢ ( ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) → 1o = 2o ) |
83 |
81 82
|
mto |
⊢ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) |
84 |
|
2on |
⊢ 2o ∈ On |
85 |
84
|
elexi |
⊢ 2o ∈ V |
86 |
85
|
prid2 |
⊢ 2o ∈ { 1o , 2o } |
87 |
86
|
nosgnn0i |
⊢ ∅ ≠ 2o |
88 |
87
|
neii |
⊢ ¬ ∅ = 2o |
89 |
|
eqtr2 |
⊢ ( ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) → ∅ = 2o ) |
90 |
88 89
|
mto |
⊢ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) |
91 |
72 83 90
|
3pm3.2i |
⊢ ( ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ) |
92 |
|
fvex |
⊢ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) ∈ V |
93 |
92 92
|
brtp |
⊢ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) ↔ ( ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) ∨ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ∨ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ) ) |
94 |
|
3oran |
⊢ ( ( ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) ∨ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ∨ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ) ↔ ¬ ( ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ) ) |
95 |
93 94
|
bitri |
⊢ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) ↔ ¬ ( ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ) ) |
96 |
95
|
con2bii |
⊢ ( ( ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ) ↔ ¬ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) ) |
97 |
91 96
|
mpbi |
⊢ ¬ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) |
98 |
|
simpl2l |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) → ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ) |
99 |
98
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ) |
100 |
99
|
fveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) ) |
101 |
100
|
breq2d |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) ↔ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) ) ) |
102 |
97 101
|
mtbii |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ¬ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) ) |
103 |
|
fvres |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
104 |
|
fvres |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
105 |
103 104
|
breq12d |
⊢ ( 𝑥 ∈ 𝑋 → ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) ↔ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
106 |
105
|
notbid |
⊢ ( 𝑥 ∈ 𝑋 → ( ¬ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) ↔ ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
107 |
102 106
|
syl5ibcom |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝑥 ∈ 𝑋 → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
108 |
44
|
intnanr |
⊢ ¬ ( ∅ = 1o ∧ 1o = ∅ ) |
109 |
44
|
intnanr |
⊢ ¬ ( ∅ = 1o ∧ 1o = 2o ) |
110 |
81
|
intnan |
⊢ ¬ ( ∅ = ∅ ∧ 1o = 2o ) |
111 |
108 109 110
|
3pm3.2i |
⊢ ( ¬ ( ∅ = 1o ∧ 1o = ∅ ) ∧ ¬ ( ∅ = 1o ∧ 1o = 2o ) ∧ ¬ ( ∅ = ∅ ∧ 1o = 2o ) ) |
112 |
|
0ex |
⊢ ∅ ∈ V |
113 |
112 41
|
brtp |
⊢ ( ∅ { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } 1o ↔ ( ( ∅ = 1o ∧ 1o = ∅ ) ∨ ( ∅ = 1o ∧ 1o = 2o ) ∨ ( ∅ = ∅ ∧ 1o = 2o ) ) ) |
114 |
|
3oran |
⊢ ( ( ( ∅ = 1o ∧ 1o = ∅ ) ∨ ( ∅ = 1o ∧ 1o = 2o ) ∨ ( ∅ = ∅ ∧ 1o = 2o ) ) ↔ ¬ ( ¬ ( ∅ = 1o ∧ 1o = ∅ ) ∧ ¬ ( ∅ = 1o ∧ 1o = 2o ) ∧ ¬ ( ∅ = ∅ ∧ 1o = 2o ) ) ) |
115 |
113 114
|
bitri |
⊢ ( ∅ { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } 1o ↔ ¬ ( ¬ ( ∅ = 1o ∧ 1o = ∅ ) ∧ ¬ ( ∅ = 1o ∧ 1o = 2o ) ∧ ¬ ( ∅ = ∅ ∧ 1o = 2o ) ) ) |
116 |
115
|
con2bii |
⊢ ( ( ¬ ( ∅ = 1o ∧ 1o = ∅ ) ∧ ¬ ( ∅ = 1o ∧ 1o = 2o ) ∧ ¬ ( ∅ = ∅ ∧ 1o = 2o ) ) ↔ ¬ ∅ { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } 1o ) |
117 |
111 116
|
mpbi |
⊢ ¬ ∅ { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } 1o |
118 |
45 46
|
breq12d |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( ( 𝐴 ‘ 𝑋 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑋 ) ↔ ∅ { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } 1o ) ) |
119 |
117 118
|
mtbiri |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ¬ ( 𝐴 ‘ 𝑋 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑋 ) ) |
120 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑋 ) ) |
121 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑋 ) ) |
122 |
120 121
|
breq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ↔ ( 𝐴 ‘ 𝑋 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑋 ) ) ) |
123 |
122
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ↔ ¬ ( 𝐴 ‘ 𝑋 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑋 ) ) ) |
124 |
119 123
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝑥 = 𝑋 → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
125 |
107 124
|
jaod |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
126 |
69 125
|
sylbid |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝑥 ⊆ 𝑋 → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
127 |
67 126
|
mpd |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) |
128 |
127
|
expr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
129 |
128
|
ralrimiva |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐵 ‘ 𝑋 ) = 1o ) → ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
130 |
40 129
|
mtand |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ¬ ( 𝐵 ‘ 𝑋 ) = 1o ) |
131 |
|
nofv |
⊢ ( 𝐵 ∈ No → ( ( 𝐵 ‘ 𝑋 ) = ∅ ∨ ( 𝐵 ‘ 𝑋 ) = 1o ∨ ( 𝐵 ‘ 𝑋 ) = 2o ) ) |
132 |
32 131
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ( ( 𝐵 ‘ 𝑋 ) = ∅ ∨ ( 𝐵 ‘ 𝑋 ) = 1o ∨ ( 𝐵 ‘ 𝑋 ) = 2o ) ) |
133 |
|
3orrot |
⊢ ( ( ( 𝐵 ‘ 𝑋 ) = ∅ ∨ ( 𝐵 ‘ 𝑋 ) = 1o ∨ ( 𝐵 ‘ 𝑋 ) = 2o ) ↔ ( ( 𝐵 ‘ 𝑋 ) = 1o ∨ ( 𝐵 ‘ 𝑋 ) = 2o ∨ ( 𝐵 ‘ 𝑋 ) = ∅ ) ) |
134 |
|
3orrot |
⊢ ( ( ( 𝐵 ‘ 𝑋 ) = 1o ∨ ( 𝐵 ‘ 𝑋 ) = 2o ∨ ( 𝐵 ‘ 𝑋 ) = ∅ ) ↔ ( ( 𝐵 ‘ 𝑋 ) = 2o ∨ ( 𝐵 ‘ 𝑋 ) = ∅ ∨ ( 𝐵 ‘ 𝑋 ) = 1o ) ) |
135 |
133 134
|
bitri |
⊢ ( ( ( 𝐵 ‘ 𝑋 ) = ∅ ∨ ( 𝐵 ‘ 𝑋 ) = 1o ∨ ( 𝐵 ‘ 𝑋 ) = 2o ) ↔ ( ( 𝐵 ‘ 𝑋 ) = 2o ∨ ( 𝐵 ‘ 𝑋 ) = ∅ ∨ ( 𝐵 ‘ 𝑋 ) = 1o ) ) |
136 |
132 135
|
sylib |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ( ( 𝐵 ‘ 𝑋 ) = 2o ∨ ( 𝐵 ‘ 𝑋 ) = ∅ ∨ ( 𝐵 ‘ 𝑋 ) = 1o ) ) |
137 |
31 130 136
|
ecase23d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ( 𝐵 ‘ 𝑋 ) = 2o ) |