Step |
Hyp |
Ref |
Expression |
1 |
|
simp11 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A A e. No ) |
2 |
|
sltso |
|- |
3 |
|
sonr |
|- ( ( -. A |
4 |
2 3
|
mpan |
|- ( A e. No -> -. A |
5 |
1 4
|
syl |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. A |
6 |
|
simp2r |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A A |
7 |
|
breq2 |
|- ( A = B -> ( A A |
8 |
6 7
|
syl5ibrcom |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A = B -> A |
9 |
5 8
|
mtod |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. A = B ) |
10 |
|
simpl2l |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A |` X ) = ( B |` X ) ) |
11 |
|
simpl11 |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A A e. No ) |
12 |
|
nofun |
|- ( A e. No -> Fun A ) |
13 |
|
funrel |
|- ( Fun A -> Rel A ) |
14 |
11 12 13
|
3syl |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A Rel A ) |
15 |
|
simpl13 |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A X e. On ) |
16 |
|
simpl3 |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A ` X ) = (/) ) |
17 |
|
nolt02olem |
|- ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> dom A C_ X ) |
18 |
11 15 16 17
|
syl3anc |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A dom A C_ X ) |
19 |
|
relssres |
|- ( ( Rel A /\ dom A C_ X ) -> ( A |` X ) = A ) |
20 |
14 18 19
|
syl2anc |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A |` X ) = A ) |
21 |
|
simpl12 |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A B e. No ) |
22 |
|
nofun |
|- ( B e. No -> Fun B ) |
23 |
|
funrel |
|- ( Fun B -> Rel B ) |
24 |
21 22 23
|
3syl |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A Rel B ) |
25 |
|
simpr |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( B ` X ) = (/) ) |
26 |
|
nolt02olem |
|- ( ( B e. No /\ X e. On /\ ( B ` X ) = (/) ) -> dom B C_ X ) |
27 |
21 15 25 26
|
syl3anc |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A dom B C_ X ) |
28 |
|
relssres |
|- ( ( Rel B /\ dom B C_ X ) -> ( B |` X ) = B ) |
29 |
24 27 28
|
syl2anc |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( B |` X ) = B ) |
30 |
10 20 29
|
3eqtr3d |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A A = B ) |
31 |
9 30
|
mtand |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. ( B ` X ) = (/) ) |
32 |
|
simp12 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A B e. No ) |
33 |
|
sltval |
|- ( ( A e. No /\ B e. No ) -> ( A E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) ) |
34 |
1 32 33
|
syl2anc |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) ) |
35 |
6 34
|
mpbid |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
36 |
|
df-an |
|- ( ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) <-> -. ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
37 |
36
|
rexbii |
|- ( E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) <-> E. x e. On -. ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
38 |
|
rexnal |
|- ( E. x e. On -. ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) <-> -. A. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
39 |
37 38
|
bitri |
|- ( E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) <-> -. A. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
40 |
35 39
|
sylib |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. A. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
41 |
|
1oex |
|- 1o e. _V |
42 |
41
|
prid1 |
|- 1o e. { 1o , 2o } |
43 |
42
|
nosgnn0i |
|- (/) =/= 1o |
44 |
43
|
neii |
|- -. (/) = 1o |
45 |
|
simpll3 |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A ` X ) = (/) ) |
46 |
|
simplr |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( B ` X ) = 1o ) |
47 |
|
eqeq1 |
|- ( ( A ` X ) = ( B ` X ) -> ( ( A ` X ) = (/) <-> ( B ` X ) = (/) ) ) |
48 |
47
|
anbi1d |
|- ( ( A ` X ) = ( B ` X ) -> ( ( ( A ` X ) = (/) /\ ( B ` X ) = 1o ) <-> ( ( B ` X ) = (/) /\ ( B ` X ) = 1o ) ) ) |
49 |
|
eqtr2 |
|- ( ( ( B ` X ) = (/) /\ ( B ` X ) = 1o ) -> (/) = 1o ) |
50 |
48 49
|
syl6bi |
|- ( ( A ` X ) = ( B ` X ) -> ( ( ( A ` X ) = (/) /\ ( B ` X ) = 1o ) -> (/) = 1o ) ) |
51 |
50
|
com12 |
|- ( ( ( A ` X ) = (/) /\ ( B ` X ) = 1o ) -> ( ( A ` X ) = ( B ` X ) -> (/) = 1o ) ) |
52 |
45 46 51
|
syl2anc |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( A ` X ) = ( B ` X ) -> (/) = 1o ) ) |
53 |
44 52
|
mtoi |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. ( A ` X ) = ( B ` X ) ) |
54 |
|
simpr |
|- ( ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A X e. x ) |
55 |
|
simplrr |
|- ( ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A A. y e. x ( A ` y ) = ( B ` y ) ) |
56 |
|
fveq2 |
|- ( y = X -> ( A ` y ) = ( A ` X ) ) |
57 |
|
fveq2 |
|- ( y = X -> ( B ` y ) = ( B ` X ) ) |
58 |
56 57
|
eqeq12d |
|- ( y = X -> ( ( A ` y ) = ( B ` y ) <-> ( A ` X ) = ( B ` X ) ) ) |
59 |
58
|
rspcv |
|- ( X e. x -> ( A. y e. x ( A ` y ) = ( B ` y ) -> ( A ` X ) = ( B ` X ) ) ) |
60 |
54 55 59
|
sylc |
|- ( ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A ` X ) = ( B ` X ) ) |
61 |
53 60
|
mtand |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. X e. x ) |
62 |
|
simprl |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A x e. On ) |
63 |
|
simpl13 |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A X e. On ) |
64 |
63
|
adantr |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A X e. On ) |
65 |
|
ontri1 |
|- ( ( x e. On /\ X e. On ) -> ( x C_ X <-> -. X e. x ) ) |
66 |
62 64 65
|
syl2anc |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( x C_ X <-> -. X e. x ) ) |
67 |
61 66
|
mpbird |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A x C_ X ) |
68 |
|
onsseleq |
|- ( ( x e. On /\ X e. On ) -> ( x C_ X <-> ( x e. X \/ x = X ) ) ) |
69 |
62 64 68
|
syl2anc |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( x C_ X <-> ( x e. X \/ x = X ) ) ) |
70 |
|
eqtr2 |
|- ( ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 1o ) -> (/) = 1o ) |
71 |
70
|
ancoms |
|- ( ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) -> (/) = 1o ) |
72 |
44 71
|
mto |
|- -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) |
73 |
|
df-1o |
|- 1o = suc (/) |
74 |
|
df-2o |
|- 2o = suc 1o |
75 |
73 74
|
eqeq12i |
|- ( 1o = 2o <-> suc (/) = suc 1o ) |
76 |
|
0elon |
|- (/) e. On |
77 |
|
1on |
|- 1o e. On |
78 |
|
suc11 |
|- ( ( (/) e. On /\ 1o e. On ) -> ( suc (/) = suc 1o <-> (/) = 1o ) ) |
79 |
76 77 78
|
mp2an |
|- ( suc (/) = suc 1o <-> (/) = 1o ) |
80 |
75 79
|
bitri |
|- ( 1o = 2o <-> (/) = 1o ) |
81 |
43 80
|
nemtbir |
|- -. 1o = 2o |
82 |
|
eqtr2 |
|- ( ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) -> 1o = 2o ) |
83 |
81 82
|
mto |
|- -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) |
84 |
|
2on |
|- 2o e. On |
85 |
84
|
elexi |
|- 2o e. _V |
86 |
85
|
prid2 |
|- 2o e. { 1o , 2o } |
87 |
86
|
nosgnn0i |
|- (/) =/= 2o |
88 |
87
|
neii |
|- -. (/) = 2o |
89 |
|
eqtr2 |
|- ( ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) -> (/) = 2o ) |
90 |
88 89
|
mto |
|- -. ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) |
91 |
72 83 90
|
3pm3.2i |
|- ( -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) /\ -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) /\ -. ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) ) |
92 |
|
fvex |
|- ( ( A |` X ) ` x ) e. _V |
93 |
92 92
|
brtp |
|- ( ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` X ) ` x ) <-> ( ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) \/ ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) \/ ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) ) ) |
94 |
|
3oran |
|- ( ( ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) \/ ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) \/ ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) ) <-> -. ( -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) /\ -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) /\ -. ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) ) ) |
95 |
93 94
|
bitri |
|- ( ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` X ) ` x ) <-> -. ( -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) /\ -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) /\ -. ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) ) ) |
96 |
95
|
con2bii |
|- ( ( -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) /\ -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) /\ -. ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) ) <-> -. ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` X ) ` x ) ) |
97 |
91 96
|
mpbi |
|- -. ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` X ) ` x ) |
98 |
|
simpl2l |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A |` X ) = ( B |` X ) ) |
99 |
98
|
adantr |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A |` X ) = ( B |` X ) ) |
100 |
99
|
fveq1d |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( A |` X ) ` x ) = ( ( B |` X ) ` x ) ) |
101 |
100
|
breq2d |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` X ) ` x ) <-> ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( B |` X ) ` x ) ) ) |
102 |
97 101
|
mtbii |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( B |` X ) ` x ) ) |
103 |
|
fvres |
|- ( x e. X -> ( ( A |` X ) ` x ) = ( A ` x ) ) |
104 |
|
fvres |
|- ( x e. X -> ( ( B |` X ) ` x ) = ( B ` x ) ) |
105 |
103 104
|
breq12d |
|- ( x e. X -> ( ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( B |` X ) ` x ) <-> ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
106 |
105
|
notbid |
|- ( x e. X -> ( -. ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( B |` X ) ` x ) <-> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
107 |
102 106
|
syl5ibcom |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( x e. X -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
108 |
44
|
intnanr |
|- -. ( (/) = 1o /\ 1o = (/) ) |
109 |
44
|
intnanr |
|- -. ( (/) = 1o /\ 1o = 2o ) |
110 |
81
|
intnan |
|- -. ( (/) = (/) /\ 1o = 2o ) |
111 |
108 109 110
|
3pm3.2i |
|- ( -. ( (/) = 1o /\ 1o = (/) ) /\ -. ( (/) = 1o /\ 1o = 2o ) /\ -. ( (/) = (/) /\ 1o = 2o ) ) |
112 |
|
0ex |
|- (/) e. _V |
113 |
112 41
|
brtp |
|- ( (/) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } 1o <-> ( ( (/) = 1o /\ 1o = (/) ) \/ ( (/) = 1o /\ 1o = 2o ) \/ ( (/) = (/) /\ 1o = 2o ) ) ) |
114 |
|
3oran |
|- ( ( ( (/) = 1o /\ 1o = (/) ) \/ ( (/) = 1o /\ 1o = 2o ) \/ ( (/) = (/) /\ 1o = 2o ) ) <-> -. ( -. ( (/) = 1o /\ 1o = (/) ) /\ -. ( (/) = 1o /\ 1o = 2o ) /\ -. ( (/) = (/) /\ 1o = 2o ) ) ) |
115 |
113 114
|
bitri |
|- ( (/) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } 1o <-> -. ( -. ( (/) = 1o /\ 1o = (/) ) /\ -. ( (/) = 1o /\ 1o = 2o ) /\ -. ( (/) = (/) /\ 1o = 2o ) ) ) |
116 |
115
|
con2bii |
|- ( ( -. ( (/) = 1o /\ 1o = (/) ) /\ -. ( (/) = 1o /\ 1o = 2o ) /\ -. ( (/) = (/) /\ 1o = 2o ) ) <-> -. (/) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } 1o ) |
117 |
111 116
|
mpbi |
|- -. (/) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } 1o |
118 |
45 46
|
breq12d |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( A ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` X ) <-> (/) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } 1o ) ) |
119 |
117 118
|
mtbiri |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. ( A ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` X ) ) |
120 |
|
fveq2 |
|- ( x = X -> ( A ` x ) = ( A ` X ) ) |
121 |
|
fveq2 |
|- ( x = X -> ( B ` x ) = ( B ` X ) ) |
122 |
120 121
|
breq12d |
|- ( x = X -> ( ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) <-> ( A ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` X ) ) ) |
123 |
122
|
notbid |
|- ( x = X -> ( -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) <-> -. ( A ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` X ) ) ) |
124 |
119 123
|
syl5ibrcom |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( x = X -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
125 |
107 124
|
jaod |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( x e. X \/ x = X ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
126 |
69 125
|
sylbid |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( x C_ X -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
127 |
67 126
|
mpd |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) |
128 |
127
|
expr |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
129 |
128
|
ralrimiva |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A A. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
130 |
40 129
|
mtand |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. ( B ` X ) = 1o ) |
131 |
|
nofv |
|- ( B e. No -> ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) ) |
132 |
32 131
|
syl |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) ) |
133 |
|
3orrot |
|- ( ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) <-> ( ( B ` X ) = 1o \/ ( B ` X ) = 2o \/ ( B ` X ) = (/) ) ) |
134 |
|
3orrot |
|- ( ( ( B ` X ) = 1o \/ ( B ` X ) = 2o \/ ( B ` X ) = (/) ) <-> ( ( B ` X ) = 2o \/ ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) |
135 |
133 134
|
bitri |
|- ( ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) <-> ( ( B ` X ) = 2o \/ ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) |
136 |
132 135
|
sylib |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( B ` X ) = 2o \/ ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) |
137 |
31 130 136
|
ecase23d |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( B ` X ) = 2o ) |