Metamath Proof Explorer


Theorem nolt02olem

Description: Lemma for nolt02o . If A ( X ) is undefined with A surreal and X ordinal, then dom A C_ X . (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion nolt02olem
|- ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> dom A C_ X )

Proof

Step Hyp Ref Expression
1 nosgnn0
 |-  -. (/) e. { 1o , 2o }
2 1 a1i
 |-  ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> -. (/) e. { 1o , 2o } )
3 simpl3
 |-  ( ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) /\ X e. dom A ) -> ( A ` X ) = (/) )
4 simpl1
 |-  ( ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) /\ X e. dom A ) -> A e. No )
5 norn
 |-  ( A e. No -> ran A C_ { 1o , 2o } )
6 4 5 syl
 |-  ( ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) /\ X e. dom A ) -> ran A C_ { 1o , 2o } )
7 nofun
 |-  ( A e. No -> Fun A )
8 7 3ad2ant1
 |-  ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> Fun A )
9 fvelrn
 |-  ( ( Fun A /\ X e. dom A ) -> ( A ` X ) e. ran A )
10 8 9 sylan
 |-  ( ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) /\ X e. dom A ) -> ( A ` X ) e. ran A )
11 6 10 sseldd
 |-  ( ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) /\ X e. dom A ) -> ( A ` X ) e. { 1o , 2o } )
12 3 11 eqeltrrd
 |-  ( ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) /\ X e. dom A ) -> (/) e. { 1o , 2o } )
13 2 12 mtand
 |-  ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> -. X e. dom A )
14 nodmon
 |-  ( A e. No -> dom A e. On )
15 14 3ad2ant1
 |-  ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> dom A e. On )
16 simp2
 |-  ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> X e. On )
17 ontri1
 |-  ( ( dom A e. On /\ X e. On ) -> ( dom A C_ X <-> -. X e. dom A ) )
18 15 16 17 syl2anc
 |-  ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> ( dom A C_ X <-> -. X e. dom A ) )
19 13 18 mpbird
 |-  ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> dom A C_ X )