Metamath Proof Explorer


Theorem nolt02olem

Description: Lemma for nolt02o . If A ( X ) is undefined with A surreal and X ordinal, then dom A C_ X . (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion nolt02olem ANoXOnAX=domAX

Proof

Step Hyp Ref Expression
1 nosgnn0 ¬1𝑜2𝑜
2 1 a1i ANoXOnAX=¬1𝑜2𝑜
3 simpl3 ANoXOnAX=XdomAAX=
4 simpl1 ANoXOnAX=XdomAANo
5 norn ANoranA1𝑜2𝑜
6 4 5 syl ANoXOnAX=XdomAranA1𝑜2𝑜
7 nofun ANoFunA
8 7 3ad2ant1 ANoXOnAX=FunA
9 fvelrn FunAXdomAAXranA
10 8 9 sylan ANoXOnAX=XdomAAXranA
11 6 10 sseldd ANoXOnAX=XdomAAX1𝑜2𝑜
12 3 11 eqeltrrd ANoXOnAX=XdomA1𝑜2𝑜
13 2 12 mtand ANoXOnAX=¬XdomA
14 nodmon ANodomAOn
15 14 3ad2ant1 ANoXOnAX=domAOn
16 simp2 ANoXOnAX=XOn
17 ontri1 domAOnXOndomAX¬XdomA
18 15 16 17 syl2anc ANoXOnAX=domAX¬XdomA
19 13 18 mpbird ANoXOnAX=domAX