Metamath Proof Explorer


Theorem nolt02olem

Description: Lemma for nolt02o . If A ( X ) is undefined with A surreal and X ordinal, then dom A C_ X . (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion nolt02olem A No X On A X = dom A X

Proof

Step Hyp Ref Expression
1 nosgnn0 ¬ 1 𝑜 2 𝑜
2 1 a1i A No X On A X = ¬ 1 𝑜 2 𝑜
3 simpl3 A No X On A X = X dom A A X =
4 simpl1 A No X On A X = X dom A A No
5 norn A No ran A 1 𝑜 2 𝑜
6 4 5 syl A No X On A X = X dom A ran A 1 𝑜 2 𝑜
7 nofun A No Fun A
8 7 3ad2ant1 A No X On A X = Fun A
9 fvelrn Fun A X dom A A X ran A
10 8 9 sylan A No X On A X = X dom A A X ran A
11 6 10 sseldd A No X On A X = X dom A A X 1 𝑜 2 𝑜
12 3 11 eqeltrrd A No X On A X = X dom A 1 𝑜 2 𝑜
13 2 12 mtand A No X On A X = ¬ X dom A
14 nodmon A No dom A On
15 14 3ad2ant1 A No X On A X = dom A On
16 simp2 A No X On A X = X On
17 ontri1 dom A On X On dom A X ¬ X dom A
18 15 16 17 syl2anc A No X On A X = dom A X ¬ X dom A
19 13 18 mpbird A No X On A X = dom A X