Metamath Proof Explorer


Theorem nogt01o

Description: Given A greater than B , equal to B up to X , and B ( X ) undefined, then A ( X ) = 1o . (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Assertion nogt01o ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) → ( 𝐴𝑋 ) = 1o )

Proof

Step Hyp Ref Expression
1 sltso <s Or No
2 simp11 ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) → 𝐴 No )
3 sonr ( ( <s Or No 𝐴 No ) → ¬ 𝐴 <s 𝐴 )
4 1 2 3 sylancr ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) → ¬ 𝐴 <s 𝐴 )
5 simpl2r ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → 𝐴 <s 𝐵 )
6 simpl2l ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → ( 𝐴𝑋 ) = ( 𝐵𝑋 ) )
7 simpl11 ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → 𝐴 No )
8 nofun ( 𝐴 No → Fun 𝐴 )
9 funrel ( Fun 𝐴 → Rel 𝐴 )
10 8 9 syl ( 𝐴 No → Rel 𝐴 )
11 7 10 syl ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → Rel 𝐴 )
12 simpl13 ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → 𝑋 ∈ On )
13 simpr ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → ( 𝐴𝑋 ) = ∅ )
14 nolt02olem ( ( 𝐴 No 𝑋 ∈ On ∧ ( 𝐴𝑋 ) = ∅ ) → dom 𝐴𝑋 )
15 7 12 13 14 syl3anc ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → dom 𝐴𝑋 )
16 relssres ( ( Rel 𝐴 ∧ dom 𝐴𝑋 ) → ( 𝐴𝑋 ) = 𝐴 )
17 11 15 16 syl2anc ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → ( 𝐴𝑋 ) = 𝐴 )
18 simpl12 ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → 𝐵 No )
19 nofun ( 𝐵 No → Fun 𝐵 )
20 funrel ( Fun 𝐵 → Rel 𝐵 )
21 19 20 syl ( 𝐵 No → Rel 𝐵 )
22 18 21 syl ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → Rel 𝐵 )
23 simpl3 ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → ( 𝐵𝑋 ) = ∅ )
24 nolt02olem ( ( 𝐵 No 𝑋 ∈ On ∧ ( 𝐵𝑋 ) = ∅ ) → dom 𝐵𝑋 )
25 18 12 23 24 syl3anc ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → dom 𝐵𝑋 )
26 relssres ( ( Rel 𝐵 ∧ dom 𝐵𝑋 ) → ( 𝐵𝑋 ) = 𝐵 )
27 22 25 26 syl2anc ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → ( 𝐵𝑋 ) = 𝐵 )
28 6 17 27 3eqtr3d ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → 𝐴 = 𝐵 )
29 5 28 breqtrrd ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = ∅ ) → 𝐴 <s 𝐴 )
30 4 29 mtand ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) → ¬ ( 𝐴𝑋 ) = ∅ )
31 simp2r ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) → 𝐴 <s 𝐵 )
32 simp12 ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) → 𝐵 No )
33 sltval ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) ) )
34 2 32 33 syl2anc ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) → ( 𝐴 <s 𝐵 ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) ) )
35 31 34 mpbid ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) → ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) )
36 ralinexa ( ∀ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) → ¬ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) ↔ ¬ ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) )
37 36 con2bii ( ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ∧ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) ↔ ¬ ∀ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) → ¬ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) )
38 35 37 sylib ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) → ¬ ∀ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) → ¬ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) )
39 1n0 1o ≠ ∅
40 39 neii ¬ 1o = ∅
41 eqtr2 ( ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ) → 1o = ∅ )
42 40 41 mto ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ )
43 df-2o 2o = suc 1o
44 2on 2o ∈ On
45 43 44 eqeltrri suc 1o ∈ On
46 45 onordi Ord suc 1o
47 1oex 1o ∈ V
48 47 sucid 1o ∈ suc 1o
49 nordeq ( ( Ord suc 1o ∧ 1o ∈ suc 1o ) → suc 1o ≠ 1o )
50 46 48 49 mp2an suc 1o ≠ 1o
51 43 50 eqnetri 2o ≠ 1o
52 51 nesymi ¬ 1o = 2o
53 eqtr2 ( ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) → 1o = 2o )
54 52 53 mto ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o )
55 2on0 2o ≠ ∅
56 55 nesymi ¬ ∅ = 2o
57 eqtr2 ( ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) → ∅ = 2o )
58 56 57 mto ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o )
59 42 54 58 3pm3.2i ( ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ) ∧ ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) ∧ ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) )
60 fvex ( ( 𝐴𝑋 ) ‘ 𝑥 ) ∈ V
61 60 60 brtp ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( ( 𝐴𝑋 ) ‘ 𝑥 ) ↔ ( ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ) ∨ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) ∨ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) ) )
62 3oran ( ( ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ) ∨ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) ∨ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) ) ↔ ¬ ( ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ) ∧ ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) ∧ ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) ) )
63 61 62 bitri ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( ( 𝐴𝑋 ) ‘ 𝑥 ) ↔ ¬ ( ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ) ∧ ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) ∧ ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) ) )
64 63 con2bii ( ( ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ) ∧ ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) ∧ ¬ ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴𝑋 ) ‘ 𝑥 ) = 2o ) ) ↔ ¬ ( ( 𝐴𝑋 ) ‘ 𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( ( 𝐴𝑋 ) ‘ 𝑥 ) )
65 59 64 mpbi ¬ ( ( 𝐴𝑋 ) ‘ 𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( ( 𝐴𝑋 ) ‘ 𝑥 )
66 simpl2l ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) → ( 𝐴𝑋 ) = ( 𝐵𝑋 ) )
67 66 adantr ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( 𝐴𝑋 ) = ( 𝐵𝑋 ) )
68 67 fveq1d ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ( ( 𝐵𝑋 ) ‘ 𝑥 ) )
69 68 breq2d ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( ( 𝐴𝑋 ) ‘ 𝑥 ) ↔ ( ( 𝐴𝑋 ) ‘ 𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( ( 𝐵𝑋 ) ‘ 𝑥 ) ) )
70 65 69 mtbii ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ¬ ( ( 𝐴𝑋 ) ‘ 𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( ( 𝐵𝑋 ) ‘ 𝑥 ) )
71 fvres ( 𝑥𝑋 → ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ( 𝐴𝑥 ) )
72 fvres ( 𝑥𝑋 → ( ( 𝐵𝑋 ) ‘ 𝑥 ) = ( 𝐵𝑥 ) )
73 71 72 breq12d ( 𝑥𝑋 → ( ( ( 𝐴𝑋 ) ‘ 𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( ( 𝐵𝑋 ) ‘ 𝑥 ) ↔ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) )
74 73 notbid ( 𝑥𝑋 → ( ¬ ( ( 𝐴𝑋 ) ‘ 𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( ( 𝐵𝑋 ) ‘ 𝑥 ) ↔ ¬ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) )
75 70 74 syl5ibcom ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( 𝑥𝑋 → ¬ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) )
76 51 neii ¬ 2o = 1o
77 76 intnanr ¬ ( 2o = 1o ∧ ∅ = ∅ )
78 56 intnan ¬ ( 2o = 1o ∧ ∅ = 2o )
79 56 intnan ¬ ( 2o = ∅ ∧ ∅ = 2o )
80 77 78 79 3pm3.2i ( ¬ ( 2o = 1o ∧ ∅ = ∅ ) ∧ ¬ ( 2o = 1o ∧ ∅ = 2o ) ∧ ¬ ( 2o = ∅ ∧ ∅ = 2o ) )
81 2oex 2o ∈ V
82 0ex ∅ ∈ V
83 81 82 brtp ( 2o { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ∅ ↔ ( ( 2o = 1o ∧ ∅ = ∅ ) ∨ ( 2o = 1o ∧ ∅ = 2o ) ∨ ( 2o = ∅ ∧ ∅ = 2o ) ) )
84 3oran ( ( ( 2o = 1o ∧ ∅ = ∅ ) ∨ ( 2o = 1o ∧ ∅ = 2o ) ∨ ( 2o = ∅ ∧ ∅ = 2o ) ) ↔ ¬ ( ¬ ( 2o = 1o ∧ ∅ = ∅ ) ∧ ¬ ( 2o = 1o ∧ ∅ = 2o ) ∧ ¬ ( 2o = ∅ ∧ ∅ = 2o ) ) )
85 83 84 bitri ( 2o { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ∅ ↔ ¬ ( ¬ ( 2o = 1o ∧ ∅ = ∅ ) ∧ ¬ ( 2o = 1o ∧ ∅ = 2o ) ∧ ¬ ( 2o = ∅ ∧ ∅ = 2o ) ) )
86 85 con2bii ( ( ¬ ( 2o = 1o ∧ ∅ = ∅ ) ∧ ¬ ( 2o = 1o ∧ ∅ = 2o ) ∧ ¬ ( 2o = ∅ ∧ ∅ = 2o ) ) ↔ ¬ 2o { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ∅ )
87 80 86 mpbi ¬ 2o { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ∅
88 simplr ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( 𝐴𝑋 ) = 2o )
89 simpll3 ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( 𝐵𝑋 ) = ∅ )
90 88 89 breq12d ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( ( 𝐴𝑋 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑋 ) ↔ 2o { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ∅ ) )
91 87 90 mtbiri ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ¬ ( 𝐴𝑋 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑋 ) )
92 fveq2 ( 𝑥 = 𝑋 → ( 𝐴𝑥 ) = ( 𝐴𝑋 ) )
93 fveq2 ( 𝑥 = 𝑋 → ( 𝐵𝑥 ) = ( 𝐵𝑋 ) )
94 92 93 breq12d ( 𝑥 = 𝑋 → ( ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ↔ ( 𝐴𝑋 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑋 ) ) )
95 94 notbid ( 𝑥 = 𝑋 → ( ¬ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ↔ ¬ ( 𝐴𝑋 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑋 ) ) )
96 91 95 syl5ibrcom ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( 𝑥 = 𝑋 → ¬ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) )
97 fveq2 ( 𝑦 = 𝑋 → ( 𝐴𝑦 ) = ( 𝐴𝑋 ) )
98 fveq2 ( 𝑦 = 𝑋 → ( 𝐵𝑦 ) = ( 𝐵𝑋 ) )
99 97 98 eqeq12d ( 𝑦 = 𝑋 → ( ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ↔ ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ) )
100 99 rspccv ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) → ( 𝑋𝑥 → ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ) )
101 100 ad2antll ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( 𝑋𝑥 → ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ) )
102 eqcom ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ↔ ( 𝐵𝑋 ) = ( 𝐴𝑋 ) )
103 101 102 syl6ib ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( 𝑋𝑥 → ( 𝐵𝑋 ) = ( 𝐴𝑋 ) ) )
104 89 88 eqeq12d ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( ( 𝐵𝑋 ) = ( 𝐴𝑋 ) ↔ ∅ = 2o ) )
105 103 104 sylibd ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( 𝑋𝑥 → ∅ = 2o ) )
106 56 105 mtoi ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ¬ 𝑋𝑥 )
107 simprl ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → 𝑥 ∈ On )
108 simpl13 ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) → 𝑋 ∈ On )
109 108 adantr ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → 𝑋 ∈ On )
110 ontri1 ( ( 𝑥 ∈ On ∧ 𝑋 ∈ On ) → ( 𝑥𝑋 ↔ ¬ 𝑋𝑥 ) )
111 onsseleq ( ( 𝑥 ∈ On ∧ 𝑋 ∈ On ) → ( 𝑥𝑋 ↔ ( 𝑥𝑋𝑥 = 𝑋 ) ) )
112 110 111 bitr3d ( ( 𝑥 ∈ On ∧ 𝑋 ∈ On ) → ( ¬ 𝑋𝑥 ↔ ( 𝑥𝑋𝑥 = 𝑋 ) ) )
113 107 109 112 syl2anc ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( ¬ 𝑋𝑥 ↔ ( 𝑥𝑋𝑥 = 𝑋 ) ) )
114 106 113 mpbid ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ( 𝑥𝑋𝑥 = 𝑋 ) )
115 75 96 114 mpjaod ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) ) ) → ¬ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) )
116 115 expr ( ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) → ¬ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) )
117 116 ralrimiva ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) ∧ ( 𝐴𝑋 ) = 2o ) → ∀ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴𝑦 ) = ( 𝐵𝑦 ) → ¬ ( 𝐴𝑥 ) { ⟨ 1o , ∅ ⟩ , ⟨ 1o , 2o ⟩ , ⟨ ∅ , 2o ⟩ } ( 𝐵𝑥 ) ) )
118 38 117 mtand ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) → ¬ ( 𝐴𝑋 ) = 2o )
119 nofv ( 𝐴 No → ( ( 𝐴𝑋 ) = ∅ ∨ ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = 2o ) )
120 2 119 syl ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) → ( ( 𝐴𝑋 ) = ∅ ∨ ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = 2o ) )
121 3orcoma ( ( ( 𝐴𝑋 ) = ∅ ∨ ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = 2o ) ↔ ( ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = ∅ ∨ ( 𝐴𝑋 ) = 2o ) )
122 120 121 sylib ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) → ( ( 𝐴𝑋 ) = 1o ∨ ( 𝐴𝑋 ) = ∅ ∨ ( 𝐴𝑋 ) = 2o ) )
123 30 118 122 ecase23d ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵𝑋 ) = ∅ ) → ( 𝐴𝑋 ) = 1o )