Step |
Hyp |
Ref |
Expression |
1 |
|
sltso |
⊢ <s Or No |
2 |
|
simp11 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → 𝐴 ∈ No ) |
3 |
|
sonr |
⊢ ( ( <s Or No ∧ 𝐴 ∈ No ) → ¬ 𝐴 <s 𝐴 ) |
4 |
1 2 3
|
sylancr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ¬ 𝐴 <s 𝐴 ) |
5 |
|
simpl2r |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → 𝐴 <s 𝐵 ) |
6 |
|
simpl2l |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ) |
7 |
|
simpl11 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → 𝐴 ∈ No ) |
8 |
|
nofun |
⊢ ( 𝐴 ∈ No → Fun 𝐴 ) |
9 |
|
funrel |
⊢ ( Fun 𝐴 → Rel 𝐴 ) |
10 |
8 9
|
syl |
⊢ ( 𝐴 ∈ No → Rel 𝐴 ) |
11 |
7 10
|
syl |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → Rel 𝐴 ) |
12 |
|
simpl13 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → 𝑋 ∈ On ) |
13 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ( 𝐴 ‘ 𝑋 ) = ∅ ) |
14 |
|
nolt02olem |
⊢ ( ( 𝐴 ∈ No ∧ 𝑋 ∈ On ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → dom 𝐴 ⊆ 𝑋 ) |
15 |
7 12 13 14
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → dom 𝐴 ⊆ 𝑋 ) |
16 |
|
relssres |
⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝑋 ) → ( 𝐴 ↾ 𝑋 ) = 𝐴 ) |
17 |
11 15 16
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ( 𝐴 ↾ 𝑋 ) = 𝐴 ) |
18 |
|
simpl12 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → 𝐵 ∈ No ) |
19 |
|
nofun |
⊢ ( 𝐵 ∈ No → Fun 𝐵 ) |
20 |
|
funrel |
⊢ ( Fun 𝐵 → Rel 𝐵 ) |
21 |
19 20
|
syl |
⊢ ( 𝐵 ∈ No → Rel 𝐵 ) |
22 |
18 21
|
syl |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → Rel 𝐵 ) |
23 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ( 𝐵 ‘ 𝑋 ) = ∅ ) |
24 |
|
nolt02olem |
⊢ ( ( 𝐵 ∈ No ∧ 𝑋 ∈ On ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → dom 𝐵 ⊆ 𝑋 ) |
25 |
18 12 23 24
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → dom 𝐵 ⊆ 𝑋 ) |
26 |
|
relssres |
⊢ ( ( Rel 𝐵 ∧ dom 𝐵 ⊆ 𝑋 ) → ( 𝐵 ↾ 𝑋 ) = 𝐵 ) |
27 |
22 25 26
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → ( 𝐵 ↾ 𝑋 ) = 𝐵 ) |
28 |
6 17 27
|
3eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → 𝐴 = 𝐵 ) |
29 |
5 28
|
breqtrrd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = ∅ ) → 𝐴 <s 𝐴 ) |
30 |
4 29
|
mtand |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ¬ ( 𝐴 ‘ 𝑋 ) = ∅ ) |
31 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → 𝐴 <s 𝐵 ) |
32 |
|
simp12 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → 𝐵 ∈ No ) |
33 |
|
sltval |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ∧ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) ) |
34 |
2 32 33
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ( 𝐴 <s 𝐵 ↔ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ∧ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) ) |
35 |
31 34
|
mpbid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ∧ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
36 |
|
ralinexa |
⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ↔ ¬ ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ∧ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
37 |
36
|
con2bii |
⊢ ( ∃ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ∧ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ↔ ¬ ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
38 |
35 37
|
sylib |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ¬ ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
39 |
|
1n0 |
⊢ 1o ≠ ∅ |
40 |
39
|
neii |
⊢ ¬ 1o = ∅ |
41 |
|
eqtr2 |
⊢ ( ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) → 1o = ∅ ) |
42 |
40 41
|
mto |
⊢ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) |
43 |
|
df-2o |
⊢ 2o = suc 1o |
44 |
|
2on |
⊢ 2o ∈ On |
45 |
43 44
|
eqeltrri |
⊢ suc 1o ∈ On |
46 |
45
|
onordi |
⊢ Ord suc 1o |
47 |
|
1oex |
⊢ 1o ∈ V |
48 |
47
|
sucid |
⊢ 1o ∈ suc 1o |
49 |
|
nordeq |
⊢ ( ( Ord suc 1o ∧ 1o ∈ suc 1o ) → suc 1o ≠ 1o ) |
50 |
46 48 49
|
mp2an |
⊢ suc 1o ≠ 1o |
51 |
43 50
|
eqnetri |
⊢ 2o ≠ 1o |
52 |
51
|
nesymi |
⊢ ¬ 1o = 2o |
53 |
|
eqtr2 |
⊢ ( ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) → 1o = 2o ) |
54 |
52 53
|
mto |
⊢ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) |
55 |
|
2on0 |
⊢ 2o ≠ ∅ |
56 |
55
|
nesymi |
⊢ ¬ ∅ = 2o |
57 |
|
eqtr2 |
⊢ ( ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) → ∅ = 2o ) |
58 |
56 57
|
mto |
⊢ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) |
59 |
42 54 58
|
3pm3.2i |
⊢ ( ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ) |
60 |
|
fvex |
⊢ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) ∈ V |
61 |
60 60
|
brtp |
⊢ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) ↔ ( ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) ∨ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ∨ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ) ) |
62 |
|
3oran |
⊢ ( ( ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) ∨ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ∨ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ) ↔ ¬ ( ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ) ) |
63 |
61 62
|
bitri |
⊢ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) ↔ ¬ ( ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ) ) |
64 |
63
|
con2bii |
⊢ ( ( ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 1o ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ∧ ¬ ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ∅ ∧ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = 2o ) ) ↔ ¬ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) ) |
65 |
59 64
|
mpbi |
⊢ ¬ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) |
66 |
|
simpl2l |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) → ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ) |
67 |
66
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ) |
68 |
67
|
fveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) ) |
69 |
68
|
breq2d |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) ↔ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) ) ) |
70 |
65 69
|
mtbii |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ¬ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) ) |
71 |
|
fvres |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
72 |
|
fvres |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
73 |
71 72
|
breq12d |
⊢ ( 𝑥 ∈ 𝑋 → ( ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) ↔ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
74 |
73
|
notbid |
⊢ ( 𝑥 ∈ 𝑋 → ( ¬ ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) ↔ ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
75 |
70 74
|
syl5ibcom |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝑥 ∈ 𝑋 → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
76 |
51
|
neii |
⊢ ¬ 2o = 1o |
77 |
76
|
intnanr |
⊢ ¬ ( 2o = 1o ∧ ∅ = ∅ ) |
78 |
56
|
intnan |
⊢ ¬ ( 2o = 1o ∧ ∅ = 2o ) |
79 |
56
|
intnan |
⊢ ¬ ( 2o = ∅ ∧ ∅ = 2o ) |
80 |
77 78 79
|
3pm3.2i |
⊢ ( ¬ ( 2o = 1o ∧ ∅ = ∅ ) ∧ ¬ ( 2o = 1o ∧ ∅ = 2o ) ∧ ¬ ( 2o = ∅ ∧ ∅ = 2o ) ) |
81 |
|
2oex |
⊢ 2o ∈ V |
82 |
|
0ex |
⊢ ∅ ∈ V |
83 |
81 82
|
brtp |
⊢ ( 2o { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ∅ ↔ ( ( 2o = 1o ∧ ∅ = ∅ ) ∨ ( 2o = 1o ∧ ∅ = 2o ) ∨ ( 2o = ∅ ∧ ∅ = 2o ) ) ) |
84 |
|
3oran |
⊢ ( ( ( 2o = 1o ∧ ∅ = ∅ ) ∨ ( 2o = 1o ∧ ∅ = 2o ) ∨ ( 2o = ∅ ∧ ∅ = 2o ) ) ↔ ¬ ( ¬ ( 2o = 1o ∧ ∅ = ∅ ) ∧ ¬ ( 2o = 1o ∧ ∅ = 2o ) ∧ ¬ ( 2o = ∅ ∧ ∅ = 2o ) ) ) |
85 |
83 84
|
bitri |
⊢ ( 2o { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ∅ ↔ ¬ ( ¬ ( 2o = 1o ∧ ∅ = ∅ ) ∧ ¬ ( 2o = 1o ∧ ∅ = 2o ) ∧ ¬ ( 2o = ∅ ∧ ∅ = 2o ) ) ) |
86 |
85
|
con2bii |
⊢ ( ( ¬ ( 2o = 1o ∧ ∅ = ∅ ) ∧ ¬ ( 2o = 1o ∧ ∅ = 2o ) ∧ ¬ ( 2o = ∅ ∧ ∅ = 2o ) ) ↔ ¬ 2o { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ∅ ) |
87 |
80 86
|
mpbi |
⊢ ¬ 2o { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ∅ |
88 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝐴 ‘ 𝑋 ) = 2o ) |
89 |
|
simpll3 |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝐵 ‘ 𝑋 ) = ∅ ) |
90 |
88 89
|
breq12d |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( ( 𝐴 ‘ 𝑋 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑋 ) ↔ 2o { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ∅ ) ) |
91 |
87 90
|
mtbiri |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ¬ ( 𝐴 ‘ 𝑋 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑋 ) ) |
92 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑋 ) ) |
93 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑋 ) ) |
94 |
92 93
|
breq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ↔ ( 𝐴 ‘ 𝑋 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑋 ) ) ) |
95 |
94
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ↔ ¬ ( 𝐴 ‘ 𝑋 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑋 ) ) ) |
96 |
91 95
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝑥 = 𝑋 → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
97 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐴 ‘ 𝑦 ) = ( 𝐴 ‘ 𝑋 ) ) |
98 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐵 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑋 ) ) |
99 |
97 98
|
eqeq12d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ↔ ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) ) |
100 |
99
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ( 𝑋 ∈ 𝑥 → ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) ) |
101 |
100
|
ad2antll |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝑋 ∈ 𝑥 → ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) ) |
102 |
|
eqcom |
⊢ ( ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ↔ ( 𝐵 ‘ 𝑋 ) = ( 𝐴 ‘ 𝑋 ) ) |
103 |
101 102
|
syl6ib |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝑋 ∈ 𝑥 → ( 𝐵 ‘ 𝑋 ) = ( 𝐴 ‘ 𝑋 ) ) ) |
104 |
89 88
|
eqeq12d |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( ( 𝐵 ‘ 𝑋 ) = ( 𝐴 ‘ 𝑋 ) ↔ ∅ = 2o ) ) |
105 |
103 104
|
sylibd |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝑋 ∈ 𝑥 → ∅ = 2o ) ) |
106 |
56 105
|
mtoi |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ¬ 𝑋 ∈ 𝑥 ) |
107 |
|
simprl |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → 𝑥 ∈ On ) |
108 |
|
simpl13 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) → 𝑋 ∈ On ) |
109 |
108
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → 𝑋 ∈ On ) |
110 |
|
ontri1 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑋 ∈ On ) → ( 𝑥 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ 𝑥 ) ) |
111 |
|
onsseleq |
⊢ ( ( 𝑥 ∈ On ∧ 𝑋 ∈ On ) → ( 𝑥 ⊆ 𝑋 ↔ ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ) ) |
112 |
110 111
|
bitr3d |
⊢ ( ( 𝑥 ∈ On ∧ 𝑋 ∈ On ) → ( ¬ 𝑋 ∈ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ) ) |
113 |
107 109 112
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( ¬ 𝑋 ∈ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ) ) |
114 |
106 113
|
mpbid |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ) |
115 |
75 96 114
|
mpjaod |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) |
116 |
115
|
expr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
117 |
116
|
ralrimiva |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) → ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) → ¬ ( 𝐴 ‘ 𝑥 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) |
118 |
38 117
|
mtand |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ¬ ( 𝐴 ‘ 𝑋 ) = 2o ) |
119 |
|
nofv |
⊢ ( 𝐴 ∈ No → ( ( 𝐴 ‘ 𝑋 ) = ∅ ∨ ( 𝐴 ‘ 𝑋 ) = 1o ∨ ( 𝐴 ‘ 𝑋 ) = 2o ) ) |
120 |
2 119
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ( ( 𝐴 ‘ 𝑋 ) = ∅ ∨ ( 𝐴 ‘ 𝑋 ) = 1o ∨ ( 𝐴 ‘ 𝑋 ) = 2o ) ) |
121 |
|
3orcoma |
⊢ ( ( ( 𝐴 ‘ 𝑋 ) = ∅ ∨ ( 𝐴 ‘ 𝑋 ) = 1o ∨ ( 𝐴 ‘ 𝑋 ) = 2o ) ↔ ( ( 𝐴 ‘ 𝑋 ) = 1o ∨ ( 𝐴 ‘ 𝑋 ) = ∅ ∨ ( 𝐴 ‘ 𝑋 ) = 2o ) ) |
122 |
120 121
|
sylib |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ( ( 𝐴 ‘ 𝑋 ) = 1o ∨ ( 𝐴 ‘ 𝑋 ) = ∅ ∨ ( 𝐴 ‘ 𝑋 ) = 2o ) ) |
123 |
30 118 122
|
ecase23d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ 𝐴 <s 𝐵 ) ∧ ( 𝐵 ‘ 𝑋 ) = ∅ ) → ( 𝐴 ‘ 𝑋 ) = 1o ) |