| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
| 2 |
|
ordn2lp |
⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) ) |
| 3 |
|
pm3.13 |
⊢ ( ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) ) |
| 4 |
1 2 3
|
3syl |
⊢ ( 𝐴 ∈ On → ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) ) |
| 6 |
|
eqimss |
⊢ ( suc 𝐴 = suc 𝐵 → suc 𝐴 ⊆ suc 𝐵 ) |
| 7 |
|
sucssel |
⊢ ( 𝐴 ∈ On → ( suc 𝐴 ⊆ suc 𝐵 → 𝐴 ∈ suc 𝐵 ) ) |
| 8 |
6 7
|
syl5 |
⊢ ( 𝐴 ∈ On → ( suc 𝐴 = suc 𝐵 → 𝐴 ∈ suc 𝐵 ) ) |
| 9 |
|
elsuci |
⊢ ( 𝐴 ∈ suc 𝐵 → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) |
| 10 |
9
|
ord |
⊢ ( 𝐴 ∈ suc 𝐵 → ( ¬ 𝐴 ∈ 𝐵 → 𝐴 = 𝐵 ) ) |
| 11 |
10
|
com12 |
⊢ ( ¬ 𝐴 ∈ 𝐵 → ( 𝐴 ∈ suc 𝐵 → 𝐴 = 𝐵 ) ) |
| 12 |
8 11
|
syl9 |
⊢ ( 𝐴 ∈ On → ( ¬ 𝐴 ∈ 𝐵 → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 13 |
|
eqimss2 |
⊢ ( suc 𝐴 = suc 𝐵 → suc 𝐵 ⊆ suc 𝐴 ) |
| 14 |
|
sucssel |
⊢ ( 𝐵 ∈ On → ( suc 𝐵 ⊆ suc 𝐴 → 𝐵 ∈ suc 𝐴 ) ) |
| 15 |
13 14
|
syl5 |
⊢ ( 𝐵 ∈ On → ( suc 𝐴 = suc 𝐵 → 𝐵 ∈ suc 𝐴 ) ) |
| 16 |
|
elsuci |
⊢ ( 𝐵 ∈ suc 𝐴 → ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) |
| 17 |
16
|
ord |
⊢ ( 𝐵 ∈ suc 𝐴 → ( ¬ 𝐵 ∈ 𝐴 → 𝐵 = 𝐴 ) ) |
| 18 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
| 19 |
17 18
|
imbitrdi |
⊢ ( 𝐵 ∈ suc 𝐴 → ( ¬ 𝐵 ∈ 𝐴 → 𝐴 = 𝐵 ) ) |
| 20 |
19
|
com12 |
⊢ ( ¬ 𝐵 ∈ 𝐴 → ( 𝐵 ∈ suc 𝐴 → 𝐴 = 𝐵 ) ) |
| 21 |
15 20
|
syl9 |
⊢ ( 𝐵 ∈ On → ( ¬ 𝐵 ∈ 𝐴 → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 22 |
12 21
|
jaao |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 23 |
5 22
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
| 24 |
|
suceq |
⊢ ( 𝐴 = 𝐵 → suc 𝐴 = suc 𝐵 ) |
| 25 |
23 24
|
impbid1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵 ) ) |