Step |
Hyp |
Ref |
Expression |
1 |
|
dmres |
⊢ dom ( 𝐴 ↾ suc 𝑋 ) = ( suc 𝑋 ∩ dom 𝐴 ) |
2 |
|
simp11 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → 𝐴 ∈ No ) |
3 |
|
nodmord |
⊢ ( 𝐴 ∈ No → Ord dom 𝐴 ) |
4 |
2 3
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → Ord dom 𝐴 ) |
5 |
|
ndmfv |
⊢ ( ¬ 𝑋 ∈ dom 𝐴 → ( 𝐴 ‘ 𝑋 ) = ∅ ) |
6 |
|
2on |
⊢ 2o ∈ On |
7 |
6
|
elexi |
⊢ 2o ∈ V |
8 |
7
|
prid2 |
⊢ 2o ∈ { 1o , 2o } |
9 |
8
|
nosgnn0i |
⊢ ∅ ≠ 2o |
10 |
|
neeq1 |
⊢ ( ( 𝐴 ‘ 𝑋 ) = ∅ → ( ( 𝐴 ‘ 𝑋 ) ≠ 2o ↔ ∅ ≠ 2o ) ) |
11 |
9 10
|
mpbiri |
⊢ ( ( 𝐴 ‘ 𝑋 ) = ∅ → ( 𝐴 ‘ 𝑋 ) ≠ 2o ) |
12 |
11
|
neneqd |
⊢ ( ( 𝐴 ‘ 𝑋 ) = ∅ → ¬ ( 𝐴 ‘ 𝑋 ) = 2o ) |
13 |
5 12
|
syl |
⊢ ( ¬ 𝑋 ∈ dom 𝐴 → ¬ ( 𝐴 ‘ 𝑋 ) = 2o ) |
14 |
13
|
con4i |
⊢ ( ( 𝐴 ‘ 𝑋 ) = 2o → 𝑋 ∈ dom 𝐴 ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) → 𝑋 ∈ dom 𝐴 ) |
16 |
15
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → 𝑋 ∈ dom 𝐴 ) |
17 |
|
ordsucss |
⊢ ( Ord dom 𝐴 → ( 𝑋 ∈ dom 𝐴 → suc 𝑋 ⊆ dom 𝐴 ) ) |
18 |
4 16 17
|
sylc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → suc 𝑋 ⊆ dom 𝐴 ) |
19 |
|
df-ss |
⊢ ( suc 𝑋 ⊆ dom 𝐴 ↔ ( suc 𝑋 ∩ dom 𝐴 ) = suc 𝑋 ) |
20 |
18 19
|
sylib |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( suc 𝑋 ∩ dom 𝐴 ) = suc 𝑋 ) |
21 |
1 20
|
syl5eq |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → dom ( 𝐴 ↾ suc 𝑋 ) = suc 𝑋 ) |
22 |
|
dmres |
⊢ dom ( 𝐵 ↾ suc 𝑋 ) = ( suc 𝑋 ∩ dom 𝐵 ) |
23 |
|
simp12 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → 𝐵 ∈ No ) |
24 |
|
nodmord |
⊢ ( 𝐵 ∈ No → Ord dom 𝐵 ) |
25 |
23 24
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → Ord dom 𝐵 ) |
26 |
|
nolesgn2o |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( 𝐵 ‘ 𝑋 ) = 2o ) |
27 |
|
ndmfv |
⊢ ( ¬ 𝑋 ∈ dom 𝐵 → ( 𝐵 ‘ 𝑋 ) = ∅ ) |
28 |
|
neeq1 |
⊢ ( ( 𝐵 ‘ 𝑋 ) = ∅ → ( ( 𝐵 ‘ 𝑋 ) ≠ 2o ↔ ∅ ≠ 2o ) ) |
29 |
9 28
|
mpbiri |
⊢ ( ( 𝐵 ‘ 𝑋 ) = ∅ → ( 𝐵 ‘ 𝑋 ) ≠ 2o ) |
30 |
29
|
neneqd |
⊢ ( ( 𝐵 ‘ 𝑋 ) = ∅ → ¬ ( 𝐵 ‘ 𝑋 ) = 2o ) |
31 |
27 30
|
syl |
⊢ ( ¬ 𝑋 ∈ dom 𝐵 → ¬ ( 𝐵 ‘ 𝑋 ) = 2o ) |
32 |
31
|
con4i |
⊢ ( ( 𝐵 ‘ 𝑋 ) = 2o → 𝑋 ∈ dom 𝐵 ) |
33 |
26 32
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → 𝑋 ∈ dom 𝐵 ) |
34 |
|
ordsucss |
⊢ ( Ord dom 𝐵 → ( 𝑋 ∈ dom 𝐵 → suc 𝑋 ⊆ dom 𝐵 ) ) |
35 |
25 33 34
|
sylc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → suc 𝑋 ⊆ dom 𝐵 ) |
36 |
|
df-ss |
⊢ ( suc 𝑋 ⊆ dom 𝐵 ↔ ( suc 𝑋 ∩ dom 𝐵 ) = suc 𝑋 ) |
37 |
35 36
|
sylib |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( suc 𝑋 ∩ dom 𝐵 ) = suc 𝑋 ) |
38 |
22 37
|
syl5eq |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → dom ( 𝐵 ↾ suc 𝑋 ) = suc 𝑋 ) |
39 |
21 38
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → dom ( 𝐴 ↾ suc 𝑋 ) = dom ( 𝐵 ↾ suc 𝑋 ) ) |
40 |
21
|
eleq2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) ↔ 𝑥 ∈ suc 𝑋 ) ) |
41 |
|
vex |
⊢ 𝑥 ∈ V |
42 |
41
|
elsuc |
⊢ ( 𝑥 ∈ suc 𝑋 ↔ ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ) |
43 |
|
simp2l |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ) |
44 |
43
|
fveq1d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) ) |
45 |
44
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) ) |
46 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
47 |
46
|
fvresd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 ↾ 𝑋 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
48 |
46
|
fvresd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐵 ↾ 𝑋 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
49 |
45 47 48
|
3eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
50 |
49
|
ex |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( 𝑥 ∈ 𝑋 → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
51 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( 𝐴 ‘ 𝑋 ) = 2o ) |
52 |
51 26
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) |
53 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑋 ) ) |
54 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑋 ) ) |
55 |
53 54
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ↔ ( 𝐴 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) ) |
56 |
52 55
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( 𝑥 = 𝑋 → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
57 |
50 56
|
jaod |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
58 |
42 57
|
syl5bi |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( 𝑥 ∈ suc 𝑋 → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
59 |
58
|
imp |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) ∧ 𝑥 ∈ suc 𝑋 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
60 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) ∧ 𝑥 ∈ suc 𝑋 ) → 𝑥 ∈ suc 𝑋 ) |
61 |
60
|
fvresd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) ∧ 𝑥 ∈ suc 𝑋 ) → ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
62 |
60
|
fvresd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) ∧ 𝑥 ∈ suc 𝑋 ) → ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
63 |
59 61 62
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) ∧ 𝑥 ∈ suc 𝑋 ) → ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) |
64 |
63
|
ex |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( 𝑥 ∈ suc 𝑋 → ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) ) |
65 |
40 64
|
sylbid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) → ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) ) |
66 |
65
|
ralrimiv |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ∀ 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) |
67 |
|
nofun |
⊢ ( 𝐴 ∈ No → Fun 𝐴 ) |
68 |
|
funres |
⊢ ( Fun 𝐴 → Fun ( 𝐴 ↾ suc 𝑋 ) ) |
69 |
2 67 68
|
3syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → Fun ( 𝐴 ↾ suc 𝑋 ) ) |
70 |
|
nofun |
⊢ ( 𝐵 ∈ No → Fun 𝐵 ) |
71 |
|
funres |
⊢ ( Fun 𝐵 → Fun ( 𝐵 ↾ suc 𝑋 ) ) |
72 |
23 70 71
|
3syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → Fun ( 𝐵 ↾ suc 𝑋 ) ) |
73 |
|
eqfunfv |
⊢ ( ( Fun ( 𝐴 ↾ suc 𝑋 ) ∧ Fun ( 𝐵 ↾ suc 𝑋 ) ) → ( ( 𝐴 ↾ suc 𝑋 ) = ( 𝐵 ↾ suc 𝑋 ) ↔ ( dom ( 𝐴 ↾ suc 𝑋 ) = dom ( 𝐵 ↾ suc 𝑋 ) ∧ ∀ 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) ) ) |
74 |
69 72 73
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( ( 𝐴 ↾ suc 𝑋 ) = ( 𝐵 ↾ suc 𝑋 ) ↔ ( dom ( 𝐴 ↾ suc 𝑋 ) = dom ( 𝐵 ↾ suc 𝑋 ) ∧ ∀ 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) ) ) |
75 |
39 66 74
|
mpbir2and |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On ) ∧ ( ( 𝐴 ↾ 𝑋 ) = ( 𝐵 ↾ 𝑋 ) ∧ ( 𝐴 ‘ 𝑋 ) = 2o ) ∧ ¬ 𝐵 <s 𝐴 ) → ( 𝐴 ↾ suc 𝑋 ) = ( 𝐵 ↾ suc 𝑋 ) ) |