| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o ) )  →  𝐵  ∈   No  ) | 
						
							| 2 |  | nofv | ⊢ ( 𝐵  ∈   No   →  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  1o  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o ) )  →  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  1o  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) ) | 
						
							| 4 |  | 3orel2 | ⊢ ( ¬  ( 𝐵 ‘ 𝑋 )  =  1o  →  ( ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  1o  ∨  ( 𝐵 ‘ 𝑋 )  =  2o )  →  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) ) ) | 
						
							| 5 | 3 4 | syl5com | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o ) )  →  ( ¬  ( 𝐵 ‘ 𝑋 )  =  1o  →  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) ) ) | 
						
							| 6 |  | simp13 | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  𝑋  ∈  On ) | 
						
							| 7 |  | fveq1 | ⊢ ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  →  ( ( 𝐴  ↾  𝑋 ) ‘ 𝑦 )  =  ( ( 𝐵  ↾  𝑋 ) ‘ 𝑦 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝐴  ↾  𝑋 ) ‘ 𝑦 )  =  ( ( 𝐵  ↾  𝑋 ) ‘ 𝑦 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  𝑦  ∈  𝑋 ) | 
						
							| 10 | 9 | fvresd | ⊢ ( ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝐴  ↾  𝑋 ) ‘ 𝑦 )  =  ( 𝐴 ‘ 𝑦 ) ) | 
						
							| 11 | 9 | fvresd | ⊢ ( ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝐵  ↾  𝑋 ) ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 ) ) | 
						
							| 12 | 8 10 11 | 3eqtr3d | ⊢ ( ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 ) ) | 
						
							| 13 | 12 | ralrimiva | ⊢ ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  →  ∀ 𝑦  ∈  𝑋 ( 𝐴 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  →  ∀ 𝑦  ∈  𝑋 ( 𝐴 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 ) ) | 
						
							| 15 | 14 | 3ad2ant2 | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  ∀ 𝑦  ∈  𝑋 ( 𝐴 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 ) ) | 
						
							| 16 |  | simp2r | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  ( 𝐴 ‘ 𝑋 )  =  1o ) | 
						
							| 17 |  | simp3 | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) ) | 
						
							| 18 | 16 17 | jca | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) ) ) | 
						
							| 19 |  | andi | ⊢ ( ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  ↔  ( ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  ∅ )  ∨  ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  2o ) ) ) | 
						
							| 20 | 18 19 | sylib | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  ( ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  ∅ )  ∨  ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  2o ) ) ) | 
						
							| 21 |  | 3mix1 | ⊢ ( ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  ∅ )  →  ( ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  ∅ )  ∨  ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  2o )  ∨  ( ( 𝐴 ‘ 𝑋 )  =  ∅  ∧  ( 𝐵 ‘ 𝑋 )  =  2o ) ) ) | 
						
							| 22 |  | 3mix2 | ⊢ ( ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  2o )  →  ( ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  ∅ )  ∨  ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  2o )  ∨  ( ( 𝐴 ‘ 𝑋 )  =  ∅  ∧  ( 𝐵 ‘ 𝑋 )  =  2o ) ) ) | 
						
							| 23 | 21 22 | jaoi | ⊢ ( ( ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  ∅ )  ∨  ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  ( ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  ∅ )  ∨  ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  2o )  ∨  ( ( 𝐴 ‘ 𝑋 )  =  ∅  ∧  ( 𝐵 ‘ 𝑋 )  =  2o ) ) ) | 
						
							| 24 | 20 23 | syl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  ( ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  ∅ )  ∨  ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  2o )  ∨  ( ( 𝐴 ‘ 𝑋 )  =  ∅  ∧  ( 𝐵 ‘ 𝑋 )  =  2o ) ) ) | 
						
							| 25 |  | fvex | ⊢ ( 𝐴 ‘ 𝑋 )  ∈  V | 
						
							| 26 |  | fvex | ⊢ ( 𝐵 ‘ 𝑋 )  ∈  V | 
						
							| 27 | 25 26 | brtp | ⊢ ( ( 𝐴 ‘ 𝑋 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝐵 ‘ 𝑋 )  ↔  ( ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  ∅ )  ∨  ( ( 𝐴 ‘ 𝑋 )  =  1o  ∧  ( 𝐵 ‘ 𝑋 )  =  2o )  ∨  ( ( 𝐴 ‘ 𝑋 )  =  ∅  ∧  ( 𝐵 ‘ 𝑋 )  =  2o ) ) ) | 
						
							| 28 | 24 27 | sylibr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  ( 𝐴 ‘ 𝑋 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝐵 ‘ 𝑋 ) ) | 
						
							| 29 |  | raleq | ⊢ ( 𝑥  =  𝑋  →  ( ∀ 𝑦  ∈  𝑥 ( 𝐴 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝑋 ( 𝐴 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 ) ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐴 ‘ 𝑥 )  =  ( 𝐴 ‘ 𝑋 ) ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐵 ‘ 𝑥 )  =  ( 𝐵 ‘ 𝑋 ) ) | 
						
							| 32 | 30 31 | breq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐴 ‘ 𝑥 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝐵 ‘ 𝑥 )  ↔  ( 𝐴 ‘ 𝑋 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝐵 ‘ 𝑋 ) ) ) | 
						
							| 33 | 29 32 | anbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( ∀ 𝑦  ∈  𝑥 ( 𝐴 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 )  ∧  ( 𝐴 ‘ 𝑥 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝐵 ‘ 𝑥 ) )  ↔  ( ∀ 𝑦  ∈  𝑋 ( 𝐴 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 )  ∧  ( 𝐴 ‘ 𝑋 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝐵 ‘ 𝑋 ) ) ) ) | 
						
							| 34 | 33 | rspcev | ⊢ ( ( 𝑋  ∈  On  ∧  ( ∀ 𝑦  ∈  𝑋 ( 𝐴 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 )  ∧  ( 𝐴 ‘ 𝑋 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝐵 ‘ 𝑋 ) ) )  →  ∃ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 ( 𝐴 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 )  ∧  ( 𝐴 ‘ 𝑥 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) | 
						
							| 35 | 6 15 28 34 | syl12anc | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  ∃ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 ( 𝐴 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 )  ∧  ( 𝐴 ‘ 𝑥 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) | 
						
							| 36 |  | simp11 | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  𝐴  ∈   No  ) | 
						
							| 37 |  | simp12 | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  𝐵  ∈   No  ) | 
						
							| 38 |  | sltval | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  <s  𝐵  ↔  ∃ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 ( 𝐴 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 )  ∧  ( 𝐴 ‘ 𝑥 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) ) | 
						
							| 39 | 36 37 38 | syl2anc | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  ( 𝐴  <s  𝐵  ↔  ∃ 𝑥  ∈  On ( ∀ 𝑦  ∈  𝑥 ( 𝐴 ‘ 𝑦 )  =  ( 𝐵 ‘ 𝑦 )  ∧  ( 𝐴 ‘ 𝑥 ) { 〈 1o ,  ∅ 〉 ,  〈 1o ,  2o 〉 ,  〈 ∅ ,  2o 〉 } ( 𝐵 ‘ 𝑥 ) ) ) ) | 
						
							| 40 | 35 39 | mpbird | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o ) )  →  𝐴  <s  𝐵 ) | 
						
							| 41 | 40 | 3expia | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o ) )  →  ( ( ( 𝐵 ‘ 𝑋 )  =  ∅  ∨  ( 𝐵 ‘ 𝑋 )  =  2o )  →  𝐴  <s  𝐵 ) ) | 
						
							| 42 | 5 41 | syld | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o ) )  →  ( ¬  ( 𝐵 ‘ 𝑋 )  =  1o  →  𝐴  <s  𝐵 ) ) | 
						
							| 43 | 42 | con1d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o ) )  →  ( ¬  𝐴  <s  𝐵  →  ( 𝐵 ‘ 𝑋 )  =  1o ) ) | 
						
							| 44 | 43 | 3impia | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝑋  ∈  On )  ∧  ( ( 𝐴  ↾  𝑋 )  =  ( 𝐵  ↾  𝑋 )  ∧  ( 𝐴 ‘ 𝑋 )  =  1o )  ∧  ¬  𝐴  <s  𝐵 )  →  ( 𝐵 ‘ 𝑋 )  =  1o ) |