Metamath Proof Explorer


Theorem nogesgn1ores

Description: Given A greater than or equal to B , equal to B up to X , and A ( X ) = 1o , then ` ( A |`` suc X ) = ( B |`suc X ) . (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion nogesgn1ores ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝐴 ↾ suc 𝑋 ) = ( 𝐵 ↾ suc 𝑋 ) )

Proof

Step Hyp Ref Expression
1 dmres dom ( 𝐴 ↾ suc 𝑋 ) = ( suc 𝑋 ∩ dom 𝐴 )
2 simp11 ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → 𝐴 No )
3 nodmord ( 𝐴 No → Ord dom 𝐴 )
4 2 3 syl ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → Ord dom 𝐴 )
5 ndmfv ( ¬ 𝑋 ∈ dom 𝐴 → ( 𝐴𝑋 ) = ∅ )
6 1n0 1o ≠ ∅
7 6 necomi ∅ ≠ 1o
8 neeq1 ( ( 𝐴𝑋 ) = ∅ → ( ( 𝐴𝑋 ) ≠ 1o ↔ ∅ ≠ 1o ) )
9 7 8 mpbiri ( ( 𝐴𝑋 ) = ∅ → ( 𝐴𝑋 ) ≠ 1o )
10 9 neneqd ( ( 𝐴𝑋 ) = ∅ → ¬ ( 𝐴𝑋 ) = 1o )
11 5 10 syl ( ¬ 𝑋 ∈ dom 𝐴 → ¬ ( 𝐴𝑋 ) = 1o )
12 11 con4i ( ( 𝐴𝑋 ) = 1o𝑋 ∈ dom 𝐴 )
13 12 adantl ( ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) → 𝑋 ∈ dom 𝐴 )
14 13 3ad2ant2 ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → 𝑋 ∈ dom 𝐴 )
15 ordsucss ( Ord dom 𝐴 → ( 𝑋 ∈ dom 𝐴 → suc 𝑋 ⊆ dom 𝐴 ) )
16 4 14 15 sylc ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → suc 𝑋 ⊆ dom 𝐴 )
17 df-ss ( suc 𝑋 ⊆ dom 𝐴 ↔ ( suc 𝑋 ∩ dom 𝐴 ) = suc 𝑋 )
18 16 17 sylib ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( suc 𝑋 ∩ dom 𝐴 ) = suc 𝑋 )
19 1 18 eqtrid ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → dom ( 𝐴 ↾ suc 𝑋 ) = suc 𝑋 )
20 dmres dom ( 𝐵 ↾ suc 𝑋 ) = ( suc 𝑋 ∩ dom 𝐵 )
21 simp12 ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → 𝐵 No )
22 nodmord ( 𝐵 No → Ord dom 𝐵 )
23 21 22 syl ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → Ord dom 𝐵 )
24 nogesgn1o ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝐵𝑋 ) = 1o )
25 ndmfv ( ¬ 𝑋 ∈ dom 𝐵 → ( 𝐵𝑋 ) = ∅ )
26 neeq1 ( ( 𝐵𝑋 ) = ∅ → ( ( 𝐵𝑋 ) ≠ 1o ↔ ∅ ≠ 1o ) )
27 7 26 mpbiri ( ( 𝐵𝑋 ) = ∅ → ( 𝐵𝑋 ) ≠ 1o )
28 27 neneqd ( ( 𝐵𝑋 ) = ∅ → ¬ ( 𝐵𝑋 ) = 1o )
29 25 28 syl ( ¬ 𝑋 ∈ dom 𝐵 → ¬ ( 𝐵𝑋 ) = 1o )
30 29 con4i ( ( 𝐵𝑋 ) = 1o𝑋 ∈ dom 𝐵 )
31 24 30 syl ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → 𝑋 ∈ dom 𝐵 )
32 ordsucss ( Ord dom 𝐵 → ( 𝑋 ∈ dom 𝐵 → suc 𝑋 ⊆ dom 𝐵 ) )
33 23 31 32 sylc ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → suc 𝑋 ⊆ dom 𝐵 )
34 df-ss ( suc 𝑋 ⊆ dom 𝐵 ↔ ( suc 𝑋 ∩ dom 𝐵 ) = suc 𝑋 )
35 33 34 sylib ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( suc 𝑋 ∩ dom 𝐵 ) = suc 𝑋 )
36 20 35 eqtrid ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → dom ( 𝐵 ↾ suc 𝑋 ) = suc 𝑋 )
37 19 36 eqtr4d ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → dom ( 𝐴 ↾ suc 𝑋 ) = dom ( 𝐵 ↾ suc 𝑋 ) )
38 19 eleq2d ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) ↔ 𝑥 ∈ suc 𝑋 ) )
39 vex 𝑥 ∈ V
40 39 elsuc ( 𝑥 ∈ suc 𝑋 ↔ ( 𝑥𝑋𝑥 = 𝑋 ) )
41 simpl2l ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥𝑋 ) → ( 𝐴𝑋 ) = ( 𝐵𝑋 ) )
42 41 fveq1d ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥𝑋 ) → ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ( ( 𝐵𝑋 ) ‘ 𝑥 ) )
43 simpr ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥𝑋 ) → 𝑥𝑋 )
44 43 fvresd ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥𝑋 ) → ( ( 𝐴𝑋 ) ‘ 𝑥 ) = ( 𝐴𝑥 ) )
45 43 fvresd ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥𝑋 ) → ( ( 𝐵𝑋 ) ‘ 𝑥 ) = ( 𝐵𝑥 ) )
46 42 44 45 3eqtr3d ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥𝑋 ) → ( 𝐴𝑥 ) = ( 𝐵𝑥 ) )
47 46 ex ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝑥𝑋 → ( 𝐴𝑥 ) = ( 𝐵𝑥 ) ) )
48 simp2r ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝐴𝑋 ) = 1o )
49 48 24 eqtr4d ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝐴𝑋 ) = ( 𝐵𝑋 ) )
50 fveq2 ( 𝑥 = 𝑋 → ( 𝐴𝑥 ) = ( 𝐴𝑋 ) )
51 fveq2 ( 𝑥 = 𝑋 → ( 𝐵𝑥 ) = ( 𝐵𝑋 ) )
52 50 51 eqeq12d ( 𝑥 = 𝑋 → ( ( 𝐴𝑥 ) = ( 𝐵𝑥 ) ↔ ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ) )
53 49 52 syl5ibrcom ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝑥 = 𝑋 → ( 𝐴𝑥 ) = ( 𝐵𝑥 ) ) )
54 47 53 jaod ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( ( 𝑥𝑋𝑥 = 𝑋 ) → ( 𝐴𝑥 ) = ( 𝐵𝑥 ) ) )
55 40 54 syl5bi ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝑥 ∈ suc 𝑋 → ( 𝐴𝑥 ) = ( 𝐵𝑥 ) ) )
56 55 imp ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ suc 𝑋 ) → ( 𝐴𝑥 ) = ( 𝐵𝑥 ) )
57 simpr ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ suc 𝑋 ) → 𝑥 ∈ suc 𝑋 )
58 57 fvresd ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ suc 𝑋 ) → ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( 𝐴𝑥 ) )
59 57 fvresd ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ suc 𝑋 ) → ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( 𝐵𝑥 ) )
60 56 58 59 3eqtr4d ( ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) ∧ 𝑥 ∈ suc 𝑋 ) → ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) )
61 60 ex ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝑥 ∈ suc 𝑋 → ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) )
62 38 61 sylbid ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) → ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) )
63 62 ralrimiv ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ∀ 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) )
64 nofun ( 𝐴 No → Fun 𝐴 )
65 2 64 syl ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → Fun 𝐴 )
66 65 funresd ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → Fun ( 𝐴 ↾ suc 𝑋 ) )
67 nofun ( 𝐵 No → Fun 𝐵 )
68 21 67 syl ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → Fun 𝐵 )
69 68 funresd ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → Fun ( 𝐵 ↾ suc 𝑋 ) )
70 eqfunfv ( ( Fun ( 𝐴 ↾ suc 𝑋 ) ∧ Fun ( 𝐵 ↾ suc 𝑋 ) ) → ( ( 𝐴 ↾ suc 𝑋 ) = ( 𝐵 ↾ suc 𝑋 ) ↔ ( dom ( 𝐴 ↾ suc 𝑋 ) = dom ( 𝐵 ↾ suc 𝑋 ) ∧ ∀ 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) ) )
71 66 69 70 syl2anc ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( ( 𝐴 ↾ suc 𝑋 ) = ( 𝐵 ↾ suc 𝑋 ) ↔ ( dom ( 𝐴 ↾ suc 𝑋 ) = dom ( 𝐵 ↾ suc 𝑋 ) ∧ ∀ 𝑥 ∈ dom ( 𝐴 ↾ suc 𝑋 ) ( ( 𝐴 ↾ suc 𝑋 ) ‘ 𝑥 ) = ( ( 𝐵 ↾ suc 𝑋 ) ‘ 𝑥 ) ) ) )
72 37 63 71 mpbir2and ( ( ( 𝐴 No 𝐵 No 𝑋 ∈ On ) ∧ ( ( 𝐴𝑋 ) = ( 𝐵𝑋 ) ∧ ( 𝐴𝑋 ) = 1o ) ∧ ¬ 𝐴 <s 𝐵 ) → ( 𝐴 ↾ suc 𝑋 ) = ( 𝐵 ↾ suc 𝑋 ) )