Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) ) -> B e. No ) |
2 |
|
nofv |
|- ( B e. No -> ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) ) |
3 |
1 2
|
syl |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) ) -> ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) ) |
4 |
|
3orel2 |
|- ( -. ( B ` X ) = 1o -> ( ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) -> ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) ) |
5 |
3 4
|
syl5com |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) ) -> ( -. ( B ` X ) = 1o -> ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) ) |
6 |
|
simp13 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) -> X e. On ) |
7 |
|
fveq1 |
|- ( ( A |` X ) = ( B |` X ) -> ( ( A |` X ) ` y ) = ( ( B |` X ) ` y ) ) |
8 |
7
|
adantr |
|- ( ( ( A |` X ) = ( B |` X ) /\ y e. X ) -> ( ( A |` X ) ` y ) = ( ( B |` X ) ` y ) ) |
9 |
|
simpr |
|- ( ( ( A |` X ) = ( B |` X ) /\ y e. X ) -> y e. X ) |
10 |
9
|
fvresd |
|- ( ( ( A |` X ) = ( B |` X ) /\ y e. X ) -> ( ( A |` X ) ` y ) = ( A ` y ) ) |
11 |
9
|
fvresd |
|- ( ( ( A |` X ) = ( B |` X ) /\ y e. X ) -> ( ( B |` X ) ` y ) = ( B ` y ) ) |
12 |
8 10 11
|
3eqtr3d |
|- ( ( ( A |` X ) = ( B |` X ) /\ y e. X ) -> ( A ` y ) = ( B ` y ) ) |
13 |
12
|
ralrimiva |
|- ( ( A |` X ) = ( B |` X ) -> A. y e. X ( A ` y ) = ( B ` y ) ) |
14 |
13
|
adantr |
|- ( ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) -> A. y e. X ( A ` y ) = ( B ` y ) ) |
15 |
14
|
3ad2ant2 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) -> A. y e. X ( A ` y ) = ( B ` y ) ) |
16 |
|
simp2r |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) -> ( A ` X ) = 1o ) |
17 |
|
simp3 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) -> ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) |
18 |
16 17
|
jca |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) -> ( ( A ` X ) = 1o /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) ) |
19 |
|
andi |
|- ( ( ( A ` X ) = 1o /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) <-> ( ( ( A ` X ) = 1o /\ ( B ` X ) = (/) ) \/ ( ( A ` X ) = 1o /\ ( B ` X ) = 2o ) ) ) |
20 |
18 19
|
sylib |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) -> ( ( ( A ` X ) = 1o /\ ( B ` X ) = (/) ) \/ ( ( A ` X ) = 1o /\ ( B ` X ) = 2o ) ) ) |
21 |
|
3mix1 |
|- ( ( ( A ` X ) = 1o /\ ( B ` X ) = (/) ) -> ( ( ( A ` X ) = 1o /\ ( B ` X ) = (/) ) \/ ( ( A ` X ) = 1o /\ ( B ` X ) = 2o ) \/ ( ( A ` X ) = (/) /\ ( B ` X ) = 2o ) ) ) |
22 |
|
3mix2 |
|- ( ( ( A ` X ) = 1o /\ ( B ` X ) = 2o ) -> ( ( ( A ` X ) = 1o /\ ( B ` X ) = (/) ) \/ ( ( A ` X ) = 1o /\ ( B ` X ) = 2o ) \/ ( ( A ` X ) = (/) /\ ( B ` X ) = 2o ) ) ) |
23 |
21 22
|
jaoi |
|- ( ( ( ( A ` X ) = 1o /\ ( B ` X ) = (/) ) \/ ( ( A ` X ) = 1o /\ ( B ` X ) = 2o ) ) -> ( ( ( A ` X ) = 1o /\ ( B ` X ) = (/) ) \/ ( ( A ` X ) = 1o /\ ( B ` X ) = 2o ) \/ ( ( A ` X ) = (/) /\ ( B ` X ) = 2o ) ) ) |
24 |
20 23
|
syl |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) -> ( ( ( A ` X ) = 1o /\ ( B ` X ) = (/) ) \/ ( ( A ` X ) = 1o /\ ( B ` X ) = 2o ) \/ ( ( A ` X ) = (/) /\ ( B ` X ) = 2o ) ) ) |
25 |
|
fvex |
|- ( A ` X ) e. _V |
26 |
|
fvex |
|- ( B ` X ) e. _V |
27 |
25 26
|
brtp |
|- ( ( A ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` X ) <-> ( ( ( A ` X ) = 1o /\ ( B ` X ) = (/) ) \/ ( ( A ` X ) = 1o /\ ( B ` X ) = 2o ) \/ ( ( A ` X ) = (/) /\ ( B ` X ) = 2o ) ) ) |
28 |
24 27
|
sylibr |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) -> ( A ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` X ) ) |
29 |
|
raleq |
|- ( x = X -> ( A. y e. x ( A ` y ) = ( B ` y ) <-> A. y e. X ( A ` y ) = ( B ` y ) ) ) |
30 |
|
fveq2 |
|- ( x = X -> ( A ` x ) = ( A ` X ) ) |
31 |
|
fveq2 |
|- ( x = X -> ( B ` x ) = ( B ` X ) ) |
32 |
30 31
|
breq12d |
|- ( x = X -> ( ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) <-> ( A ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` X ) ) ) |
33 |
29 32
|
anbi12d |
|- ( x = X -> ( ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) <-> ( A. y e. X ( A ` y ) = ( B ` y ) /\ ( A ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` X ) ) ) ) |
34 |
33
|
rspcev |
|- ( ( X e. On /\ ( A. y e. X ( A ` y ) = ( B ` y ) /\ ( A ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` X ) ) ) -> E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
35 |
6 15 28 34
|
syl12anc |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) -> E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
36 |
|
simp11 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) -> A e. No ) |
37 |
|
simp12 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) -> B e. No ) |
38 |
|
sltval |
|- ( ( A e. No /\ B e. No ) -> ( A E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) ) |
39 |
36 37 38
|
syl2anc |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) -> ( A E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) ) |
40 |
35 39
|
mpbird |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) ) -> A |
41 |
40
|
3expia |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) ) -> ( ( ( B ` X ) = (/) \/ ( B ` X ) = 2o ) -> A |
42 |
5 41
|
syld |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) ) -> ( -. ( B ` X ) = 1o -> A |
43 |
42
|
con1d |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) ) -> ( -. A ( B ` X ) = 1o ) ) |
44 |
43
|
3impia |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( B ` X ) = 1o ) |