Metamath Proof Explorer


Theorem nolesgn2ores

Description: Given A less than or equal to B , equal to B up to X , and A ( X ) = 2o , then ` ( A |`` suc X ) = ( B |`suc X ) . (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion nolesgn2ores A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A A suc X = B suc X

Proof

Step Hyp Ref Expression
1 dmres dom A suc X = suc X dom A
2 simp11 A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A A No
3 nodmord A No Ord dom A
4 2 3 syl A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A Ord dom A
5 ndmfv ¬ X dom A A X =
6 2on 2 𝑜 On
7 6 elexi 2 𝑜 V
8 7 prid2 2 𝑜 1 𝑜 2 𝑜
9 8 nosgnn0i 2 𝑜
10 neeq1 A X = A X 2 𝑜 2 𝑜
11 9 10 mpbiri A X = A X 2 𝑜
12 11 neneqd A X = ¬ A X = 2 𝑜
13 5 12 syl ¬ X dom A ¬ A X = 2 𝑜
14 13 con4i A X = 2 𝑜 X dom A
15 14 adantl A X = B X A X = 2 𝑜 X dom A
16 15 3ad2ant2 A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A X dom A
17 ordsucss Ord dom A X dom A suc X dom A
18 4 16 17 sylc A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A suc X dom A
19 df-ss suc X dom A suc X dom A = suc X
20 18 19 sylib A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A suc X dom A = suc X
21 1 20 syl5eq A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A dom A suc X = suc X
22 dmres dom B suc X = suc X dom B
23 simp12 A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A B No
24 nodmord B No Ord dom B
25 23 24 syl A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A Ord dom B
26 nolesgn2o A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A B X = 2 𝑜
27 ndmfv ¬ X dom B B X =
28 neeq1 B X = B X 2 𝑜 2 𝑜
29 9 28 mpbiri B X = B X 2 𝑜
30 29 neneqd B X = ¬ B X = 2 𝑜
31 27 30 syl ¬ X dom B ¬ B X = 2 𝑜
32 31 con4i B X = 2 𝑜 X dom B
33 26 32 syl A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A X dom B
34 ordsucss Ord dom B X dom B suc X dom B
35 25 33 34 sylc A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A suc X dom B
36 df-ss suc X dom B suc X dom B = suc X
37 35 36 sylib A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A suc X dom B = suc X
38 22 37 syl5eq A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A dom B suc X = suc X
39 21 38 eqtr4d A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A dom A suc X = dom B suc X
40 21 eleq2d A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x dom A suc X x suc X
41 vex x V
42 41 elsuc x suc X x X x = X
43 simp2l A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A A X = B X
44 43 fveq1d A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A A X x = B X x
45 44 adantr A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x X A X x = B X x
46 simpr A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x X x X
47 46 fvresd A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x X A X x = A x
48 46 fvresd A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x X B X x = B x
49 45 47 48 3eqtr3d A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x X A x = B x
50 49 ex A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x X A x = B x
51 simp2r A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A A X = 2 𝑜
52 51 26 eqtr4d A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A A X = B X
53 fveq2 x = X A x = A X
54 fveq2 x = X B x = B X
55 53 54 eqeq12d x = X A x = B x A X = B X
56 52 55 syl5ibrcom A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x = X A x = B x
57 50 56 jaod A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x X x = X A x = B x
58 42 57 syl5bi A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x suc X A x = B x
59 58 imp A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x suc X A x = B x
60 simpr A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x suc X x suc X
61 60 fvresd A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x suc X A suc X x = A x
62 60 fvresd A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x suc X B suc X x = B x
63 59 61 62 3eqtr4d A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x suc X A suc X x = B suc X x
64 63 ex A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x suc X A suc X x = B suc X x
65 40 64 sylbid A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x dom A suc X A suc X x = B suc X x
66 65 ralrimiv A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A x dom A suc X A suc X x = B suc X x
67 nofun A No Fun A
68 funres Fun A Fun A suc X
69 2 67 68 3syl A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A Fun A suc X
70 nofun B No Fun B
71 funres Fun B Fun B suc X
72 23 70 71 3syl A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A Fun B suc X
73 eqfunfv Fun A suc X Fun B suc X A suc X = B suc X dom A suc X = dom B suc X x dom A suc X A suc X x = B suc X x
74 69 72 73 syl2anc A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A A suc X = B suc X dom A suc X = dom B suc X x dom A suc X A suc X x = B suc X x
75 39 66 74 mpbir2and A No B No X On A X = B X A X = 2 𝑜 ¬ B < s A A suc X = B suc X