Step |
Hyp |
Ref |
Expression |
1 |
|
noinfcbv.1 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
breq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝑦 <s 𝑥 ↔ 𝑦 <s 𝑎 ) ) |
3 |
2
|
notbid |
⊢ ( 𝑥 = 𝑎 → ( ¬ 𝑦 <s 𝑥 ↔ ¬ 𝑦 <s 𝑎 ) ) |
4 |
3
|
ralbidv |
⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑎 ) ) |
5 |
|
breq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 <s 𝑎 ↔ 𝑏 <s 𝑎 ) ) |
6 |
5
|
notbid |
⊢ ( 𝑦 = 𝑏 → ( ¬ 𝑦 <s 𝑎 ↔ ¬ 𝑏 <s 𝑎 ) ) |
7 |
6
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑎 ↔ ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) |
8 |
4 7
|
bitrdi |
⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ↔ ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) ) |
9 |
8
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ↔ ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) |
10 |
8
|
cbvriotavw |
⊢ ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) = ( ℩ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) |
11 |
10
|
dmeqi |
⊢ dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) = dom ( ℩ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) |
12 |
11
|
opeq1i |
⊢ 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 = 〈 dom ( ℩ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) , 1o 〉 |
13 |
12
|
sneqi |
⊢ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } = { 〈 dom ( ℩ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) , 1o 〉 } |
14 |
10 13
|
uneq12i |
⊢ ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) = ( ( ℩ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) ∪ { 〈 dom ( ℩ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) , 1o 〉 } ) |
15 |
|
eleq1w |
⊢ ( 𝑔 = 𝑐 → ( 𝑔 ∈ dom 𝑢 ↔ 𝑐 ∈ dom 𝑢 ) ) |
16 |
|
suceq |
⊢ ( 𝑔 = 𝑐 → suc 𝑔 = suc 𝑐 ) |
17 |
16
|
reseq2d |
⊢ ( 𝑔 = 𝑐 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑢 ↾ suc 𝑐 ) ) |
18 |
16
|
reseq2d |
⊢ ( 𝑔 = 𝑐 → ( 𝑣 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑐 ) ) |
19 |
17 18
|
eqeq12d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ↔ ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑔 = 𝑐 → ( ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ↔ ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝑔 = 𝑐 → ( ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ↔ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ) ) |
22 |
|
fveqeq2 |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑢 ‘ 𝑔 ) = 𝑥 ↔ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ) |
23 |
15 21 22
|
3anbi123d |
⊢ ( 𝑔 = 𝑐 → ( ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ↔ ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ) ) |
24 |
23
|
rexbidv |
⊢ ( 𝑔 = 𝑐 → ( ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ↔ ∃ 𝑢 ∈ 𝐵 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ) ) |
25 |
24
|
iotabidv |
⊢ ( 𝑔 = 𝑐 → ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) = ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ) ) |
26 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑢 ‘ 𝑐 ) = 𝑥 ↔ ( 𝑢 ‘ 𝑐 ) = 𝑎 ) ) |
27 |
26
|
3anbi3d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ↔ ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑎 ) ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑢 ∈ 𝐵 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ↔ ∃ 𝑢 ∈ 𝐵 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑎 ) ) ) |
29 |
|
dmeq |
⊢ ( 𝑢 = 𝑑 → dom 𝑢 = dom 𝑑 ) |
30 |
29
|
eleq2d |
⊢ ( 𝑢 = 𝑑 → ( 𝑐 ∈ dom 𝑢 ↔ 𝑐 ∈ dom 𝑑 ) ) |
31 |
|
breq1 |
⊢ ( 𝑢 = 𝑑 → ( 𝑢 <s 𝑣 ↔ 𝑑 <s 𝑣 ) ) |
32 |
31
|
notbid |
⊢ ( 𝑢 = 𝑑 → ( ¬ 𝑢 <s 𝑣 ↔ ¬ 𝑑 <s 𝑣 ) ) |
33 |
|
reseq1 |
⊢ ( 𝑢 = 𝑑 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑑 ↾ suc 𝑐 ) ) |
34 |
33
|
eqeq1d |
⊢ ( 𝑢 = 𝑑 → ( ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ↔ ( 𝑑 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ) |
35 |
32 34
|
imbi12d |
⊢ ( 𝑢 = 𝑑 → ( ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ↔ ( ¬ 𝑑 <s 𝑣 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ) ) |
36 |
35
|
ralbidv |
⊢ ( 𝑢 = 𝑑 → ( ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ↔ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑑 <s 𝑣 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ) ) |
37 |
|
breq2 |
⊢ ( 𝑣 = 𝑒 → ( 𝑑 <s 𝑣 ↔ 𝑑 <s 𝑒 ) ) |
38 |
37
|
notbid |
⊢ ( 𝑣 = 𝑒 → ( ¬ 𝑑 <s 𝑣 ↔ ¬ 𝑑 <s 𝑒 ) ) |
39 |
|
reseq1 |
⊢ ( 𝑣 = 𝑒 → ( 𝑣 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) |
40 |
39
|
eqeq2d |
⊢ ( 𝑣 = 𝑒 → ( ( 𝑑 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ↔ ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ) |
41 |
38 40
|
imbi12d |
⊢ ( 𝑣 = 𝑒 → ( ( ¬ 𝑑 <s 𝑣 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ↔ ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ) ) |
42 |
41
|
cbvralvw |
⊢ ( ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑑 <s 𝑣 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ↔ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ) |
43 |
36 42
|
bitrdi |
⊢ ( 𝑢 = 𝑑 → ( ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ↔ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ) ) |
44 |
|
fveq1 |
⊢ ( 𝑢 = 𝑑 → ( 𝑢 ‘ 𝑐 ) = ( 𝑑 ‘ 𝑐 ) ) |
45 |
44
|
eqeq1d |
⊢ ( 𝑢 = 𝑑 → ( ( 𝑢 ‘ 𝑐 ) = 𝑎 ↔ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) |
46 |
30 43 45
|
3anbi123d |
⊢ ( 𝑢 = 𝑑 → ( ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑎 ) ↔ ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) ) |
47 |
46
|
cbvrexvw |
⊢ ( ∃ 𝑢 ∈ 𝐵 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑎 ) ↔ ∃ 𝑑 ∈ 𝐵 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) |
48 |
28 47
|
bitrdi |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑢 ∈ 𝐵 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ↔ ∃ 𝑑 ∈ 𝐵 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) ) |
49 |
48
|
cbviotavw |
⊢ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑐 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑐 ) = ( 𝑣 ↾ suc 𝑐 ) ) ∧ ( 𝑢 ‘ 𝑐 ) = 𝑥 ) ) = ( ℩ 𝑎 ∃ 𝑑 ∈ 𝐵 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) |
50 |
25 49
|
eqtrdi |
⊢ ( 𝑔 = 𝑐 → ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) = ( ℩ 𝑎 ∃ 𝑑 ∈ 𝐵 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) ) |
51 |
50
|
cbvmptv |
⊢ ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) = ( 𝑐 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑑 ∈ 𝐵 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) ) |
52 |
|
eleq1w |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 ∈ dom 𝑢 ↔ 𝑏 ∈ dom 𝑢 ) ) |
53 |
|
suceq |
⊢ ( 𝑦 = 𝑏 → suc 𝑦 = suc 𝑏 ) |
54 |
53
|
reseq2d |
⊢ ( 𝑦 = 𝑏 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑢 ↾ suc 𝑏 ) ) |
55 |
53
|
reseq2d |
⊢ ( 𝑦 = 𝑏 → ( 𝑣 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑏 ) ) |
56 |
54 55
|
eqeq12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ↔ ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) |
57 |
56
|
imbi2d |
⊢ ( 𝑦 = 𝑏 → ( ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) ) |
58 |
57
|
ralbidv |
⊢ ( 𝑦 = 𝑏 → ( ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) ) |
59 |
52 58
|
anbi12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ( 𝑏 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) ) ) |
60 |
59
|
rexbidv |
⊢ ( 𝑦 = 𝑏 → ( ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ∃ 𝑢 ∈ 𝐵 ( 𝑏 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) ) ) |
61 |
29
|
eleq2d |
⊢ ( 𝑢 = 𝑑 → ( 𝑏 ∈ dom 𝑢 ↔ 𝑏 ∈ dom 𝑑 ) ) |
62 |
|
reseq1 |
⊢ ( 𝑢 = 𝑑 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑑 ↾ suc 𝑏 ) ) |
63 |
62
|
eqeq1d |
⊢ ( 𝑢 = 𝑑 → ( ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ↔ ( 𝑑 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) |
64 |
32 63
|
imbi12d |
⊢ ( 𝑢 = 𝑑 → ( ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ↔ ( ¬ 𝑑 <s 𝑣 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) ) |
65 |
64
|
ralbidv |
⊢ ( 𝑢 = 𝑑 → ( ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ↔ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑑 <s 𝑣 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) ) |
66 |
|
reseq1 |
⊢ ( 𝑣 = 𝑒 → ( 𝑣 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) |
67 |
66
|
eqeq2d |
⊢ ( 𝑣 = 𝑒 → ( ( 𝑑 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ↔ ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) |
68 |
38 67
|
imbi12d |
⊢ ( 𝑣 = 𝑒 → ( ( ¬ 𝑑 <s 𝑣 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ↔ ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) ) |
69 |
68
|
cbvralvw |
⊢ ( ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑑 <s 𝑣 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ↔ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) |
70 |
65 69
|
bitrdi |
⊢ ( 𝑢 = 𝑑 → ( ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ↔ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) ) |
71 |
61 70
|
anbi12d |
⊢ ( 𝑢 = 𝑑 → ( ( 𝑏 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) ↔ ( 𝑏 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) ) ) |
72 |
71
|
cbvrexvw |
⊢ ( ∃ 𝑢 ∈ 𝐵 ( 𝑏 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑏 ) = ( 𝑣 ↾ suc 𝑏 ) ) ) ↔ ∃ 𝑑 ∈ 𝐵 ( 𝑏 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) ) |
73 |
60 72
|
bitrdi |
⊢ ( 𝑦 = 𝑏 → ( ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ∃ 𝑑 ∈ 𝐵 ( 𝑏 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) ) ) |
74 |
73
|
cbvabv |
⊢ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } = { 𝑏 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑏 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) } |
75 |
74
|
mpteq1i |
⊢ ( 𝑐 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑑 ∈ 𝐵 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) ) = ( 𝑐 ∈ { 𝑏 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑏 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑑 ∈ 𝐵 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) ) |
76 |
51 75
|
eqtri |
⊢ ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) = ( 𝑐 ∈ { 𝑏 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑏 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑑 ∈ 𝐵 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) ) |
77 |
9 14 76
|
ifbieq12i |
⊢ if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) = if ( ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 , ( ( ℩ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) ∪ { 〈 dom ( ℩ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) , 1o 〉 } ) , ( 𝑐 ∈ { 𝑏 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑏 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑑 ∈ 𝐵 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) ) ) |
78 |
1 77
|
eqtri |
⊢ 𝑇 = if ( ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 , ( ( ℩ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) ∪ { 〈 dom ( ℩ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎 ) , 1o 〉 } ) , ( 𝑐 ∈ { 𝑏 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑏 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑏 ) = ( 𝑒 ↾ suc 𝑏 ) ) ) } ↦ ( ℩ 𝑎 ∃ 𝑑 ∈ 𝐵 ( 𝑐 ∈ dom 𝑑 ∧ ∀ 𝑒 ∈ 𝐵 ( ¬ 𝑑 <s 𝑒 → ( 𝑑 ↾ suc 𝑐 ) = ( 𝑒 ↾ suc 𝑐 ) ) ∧ ( 𝑑 ‘ 𝑐 ) = 𝑎 ) ) ) ) |