Metamath Proof Explorer


Theorem noinfcbv

Description: Change bound variables for surreal infimum. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypothesis noinfcbv.1 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
Assertion noinfcbv T = if a B b B ¬ b < s a ι a B | b B ¬ b < s a dom ι a B | b B ¬ b < s a 1 𝑜 c b | d B b dom d e B ¬ d < s e d suc b = e suc b ι a | d B c dom d e B ¬ d < s e d suc c = e suc c d c = a

Proof

Step Hyp Ref Expression
1 noinfcbv.1 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
2 breq2 x = a y < s x y < s a
3 2 notbid x = a ¬ y < s x ¬ y < s a
4 3 ralbidv x = a y B ¬ y < s x y B ¬ y < s a
5 breq1 y = b y < s a b < s a
6 5 notbid y = b ¬ y < s a ¬ b < s a
7 6 cbvralvw y B ¬ y < s a b B ¬ b < s a
8 4 7 bitrdi x = a y B ¬ y < s x b B ¬ b < s a
9 8 cbvrexvw x B y B ¬ y < s x a B b B ¬ b < s a
10 8 cbvriotavw ι x B | y B ¬ y < s x = ι a B | b B ¬ b < s a
11 10 dmeqi dom ι x B | y B ¬ y < s x = dom ι a B | b B ¬ b < s a
12 11 opeq1i dom ι x B | y B ¬ y < s x 1 𝑜 = dom ι a B | b B ¬ b < s a 1 𝑜
13 12 sneqi dom ι x B | y B ¬ y < s x 1 𝑜 = dom ι a B | b B ¬ b < s a 1 𝑜
14 10 13 uneq12i ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 = ι a B | b B ¬ b < s a dom ι a B | b B ¬ b < s a 1 𝑜
15 eleq1w g = c g dom u c dom u
16 suceq g = c suc g = suc c
17 16 reseq2d g = c u suc g = u suc c
18 16 reseq2d g = c v suc g = v suc c
19 17 18 eqeq12d g = c u suc g = v suc g u suc c = v suc c
20 19 imbi2d g = c ¬ u < s v u suc g = v suc g ¬ u < s v u suc c = v suc c
21 20 ralbidv g = c v B ¬ u < s v u suc g = v suc g v B ¬ u < s v u suc c = v suc c
22 fveqeq2 g = c u g = x u c = x
23 15 21 22 3anbi123d g = c g dom u v B ¬ u < s v u suc g = v suc g u g = x c dom u v B ¬ u < s v u suc c = v suc c u c = x
24 23 rexbidv g = c u B g dom u v B ¬ u < s v u suc g = v suc g u g = x u B c dom u v B ¬ u < s v u suc c = v suc c u c = x
25 24 iotabidv g = c ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x = ι x | u B c dom u v B ¬ u < s v u suc c = v suc c u c = x
26 eqeq2 x = a u c = x u c = a
27 26 3anbi3d x = a c dom u v B ¬ u < s v u suc c = v suc c u c = x c dom u v B ¬ u < s v u suc c = v suc c u c = a
28 27 rexbidv x = a u B c dom u v B ¬ u < s v u suc c = v suc c u c = x u B c dom u v B ¬ u < s v u suc c = v suc c u c = a
29 dmeq u = d dom u = dom d
30 29 eleq2d u = d c dom u c dom d
31 breq1 u = d u < s v d < s v
32 31 notbid u = d ¬ u < s v ¬ d < s v
33 reseq1 u = d u suc c = d suc c
34 33 eqeq1d u = d u suc c = v suc c d suc c = v suc c
35 32 34 imbi12d u = d ¬ u < s v u suc c = v suc c ¬ d < s v d suc c = v suc c
36 35 ralbidv u = d v B ¬ u < s v u suc c = v suc c v B ¬ d < s v d suc c = v suc c
37 breq2 v = e d < s v d < s e
38 37 notbid v = e ¬ d < s v ¬ d < s e
39 reseq1 v = e v suc c = e suc c
40 39 eqeq2d v = e d suc c = v suc c d suc c = e suc c
41 38 40 imbi12d v = e ¬ d < s v d suc c = v suc c ¬ d < s e d suc c = e suc c
42 41 cbvralvw v B ¬ d < s v d suc c = v suc c e B ¬ d < s e d suc c = e suc c
43 36 42 bitrdi u = d v B ¬ u < s v u suc c = v suc c e B ¬ d < s e d suc c = e suc c
44 fveq1 u = d u c = d c
45 44 eqeq1d u = d u c = a d c = a
46 30 43 45 3anbi123d u = d c dom u v B ¬ u < s v u suc c = v suc c u c = a c dom d e B ¬ d < s e d suc c = e suc c d c = a
47 46 cbvrexvw u B c dom u v B ¬ u < s v u suc c = v suc c u c = a d B c dom d e B ¬ d < s e d suc c = e suc c d c = a
48 28 47 bitrdi x = a u B c dom u v B ¬ u < s v u suc c = v suc c u c = x d B c dom d e B ¬ d < s e d suc c = e suc c d c = a
49 48 cbviotavw ι x | u B c dom u v B ¬ u < s v u suc c = v suc c u c = x = ι a | d B c dom d e B ¬ d < s e d suc c = e suc c d c = a
50 25 49 eqtrdi g = c ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x = ι a | d B c dom d e B ¬ d < s e d suc c = e suc c d c = a
51 50 cbvmptv g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x = c y | u B y dom u v B ¬ u < s v u suc y = v suc y ι a | d B c dom d e B ¬ d < s e d suc c = e suc c d c = a
52 eleq1w y = b y dom u b dom u
53 suceq y = b suc y = suc b
54 53 reseq2d y = b u suc y = u suc b
55 53 reseq2d y = b v suc y = v suc b
56 54 55 eqeq12d y = b u suc y = v suc y u suc b = v suc b
57 56 imbi2d y = b ¬ u < s v u suc y = v suc y ¬ u < s v u suc b = v suc b
58 57 ralbidv y = b v B ¬ u < s v u suc y = v suc y v B ¬ u < s v u suc b = v suc b
59 52 58 anbi12d y = b y dom u v B ¬ u < s v u suc y = v suc y b dom u v B ¬ u < s v u suc b = v suc b
60 59 rexbidv y = b u B y dom u v B ¬ u < s v u suc y = v suc y u B b dom u v B ¬ u < s v u suc b = v suc b
61 29 eleq2d u = d b dom u b dom d
62 reseq1 u = d u suc b = d suc b
63 62 eqeq1d u = d u suc b = v suc b d suc b = v suc b
64 32 63 imbi12d u = d ¬ u < s v u suc b = v suc b ¬ d < s v d suc b = v suc b
65 64 ralbidv u = d v B ¬ u < s v u suc b = v suc b v B ¬ d < s v d suc b = v suc b
66 reseq1 v = e v suc b = e suc b
67 66 eqeq2d v = e d suc b = v suc b d suc b = e suc b
68 38 67 imbi12d v = e ¬ d < s v d suc b = v suc b ¬ d < s e d suc b = e suc b
69 68 cbvralvw v B ¬ d < s v d suc b = v suc b e B ¬ d < s e d suc b = e suc b
70 65 69 bitrdi u = d v B ¬ u < s v u suc b = v suc b e B ¬ d < s e d suc b = e suc b
71 61 70 anbi12d u = d b dom u v B ¬ u < s v u suc b = v suc b b dom d e B ¬ d < s e d suc b = e suc b
72 71 cbvrexvw u B b dom u v B ¬ u < s v u suc b = v suc b d B b dom d e B ¬ d < s e d suc b = e suc b
73 60 72 bitrdi y = b u B y dom u v B ¬ u < s v u suc y = v suc y d B b dom d e B ¬ d < s e d suc b = e suc b
74 73 cbvabv y | u B y dom u v B ¬ u < s v u suc y = v suc y = b | d B b dom d e B ¬ d < s e d suc b = e suc b
75 74 mpteq1i c y | u B y dom u v B ¬ u < s v u suc y = v suc y ι a | d B c dom d e B ¬ d < s e d suc c = e suc c d c = a = c b | d B b dom d e B ¬ d < s e d suc b = e suc b ι a | d B c dom d e B ¬ d < s e d suc c = e suc c d c = a
76 51 75 eqtri g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x = c b | d B b dom d e B ¬ d < s e d suc b = e suc b ι a | d B c dom d e B ¬ d < s e d suc c = e suc c d c = a
77 9 14 76 ifbieq12i if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x = if a B b B ¬ b < s a ι a B | b B ¬ b < s a dom ι a B | b B ¬ b < s a 1 𝑜 c b | d B b dom d e B ¬ d < s e d suc b = e suc b ι a | d B c dom d e B ¬ d < s e d suc c = e suc c d c = a
78 1 77 eqtri T = if a B b B ¬ b < s a ι a B | b B ¬ b < s a dom ι a B | b B ¬ b < s a 1 𝑜 c b | d B b dom d e B ¬ d < s e d suc b = e suc b ι a | d B c dom d e B ¬ d < s e d suc c = e suc c d c = a