Metamath Proof Explorer


Theorem noetasuplem1

Description: Lemma for noeta . Establish that our final surreal really is a surreal. (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Hypotheses noetasuplem.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
noetasuplem.2 𝑍 = ( 𝑆 ∪ ( ( suc ( bday 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) )
Assertion noetasuplem1 ( ( 𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝑍 No )

Proof

Step Hyp Ref Expression
1 noetasuplem.1 𝑆 = if ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 , ( ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { ⟨ dom ( 𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ) , 2o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
2 noetasuplem.2 𝑍 = ( 𝑆 ∪ ( ( suc ( bday 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) )
3 1 nosupno ( ( 𝐴 No 𝐴 ∈ V ) → 𝑆 No )
4 3 3adant3 ( ( 𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝑆 No )
5 bdayimaon ( 𝐵 ∈ V → suc ( bday 𝐵 ) ∈ On )
6 5 3ad2ant3 ( ( 𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V ) → suc ( bday 𝐵 ) ∈ On )
7 1oex 1o ∈ V
8 7 prid1 1o ∈ { 1o , 2o }
9 8 noextendseq ( ( 𝑆 No ∧ suc ( bday 𝐵 ) ∈ On ) → ( 𝑆 ∪ ( ( suc ( bday 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ∈ No )
10 4 6 9 syl2anc ( ( 𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑆 ∪ ( ( suc ( bday 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ∈ No )
11 2 10 eqeltrid ( ( 𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝑍 No )