Step |
Hyp |
Ref |
Expression |
1 |
|
noextend.1 |
⊢ 𝑋 ∈ { 1o , 2o } |
2 |
|
nofun |
⊢ ( 𝐴 ∈ No → Fun 𝐴 ) |
3 |
|
fnconstg |
⊢ ( 𝑋 ∈ { 1o , 2o } → ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) Fn ( 𝐵 ∖ dom 𝐴 ) ) |
4 |
|
fnfun |
⊢ ( ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) Fn ( 𝐵 ∖ dom 𝐴 ) → Fun ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) |
5 |
1 3 4
|
mp2b |
⊢ Fun ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) |
6 |
|
snnzg |
⊢ ( 𝑋 ∈ { 1o , 2o } → { 𝑋 } ≠ ∅ ) |
7 |
|
dmxp |
⊢ ( { 𝑋 } ≠ ∅ → dom ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) = ( 𝐵 ∖ dom 𝐴 ) ) |
8 |
1 6 7
|
mp2b |
⊢ dom ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) = ( 𝐵 ∖ dom 𝐴 ) |
9 |
8
|
ineq2i |
⊢ ( dom 𝐴 ∩ dom ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) = ( dom 𝐴 ∩ ( 𝐵 ∖ dom 𝐴 ) ) |
10 |
|
disjdif |
⊢ ( dom 𝐴 ∩ ( 𝐵 ∖ dom 𝐴 ) ) = ∅ |
11 |
9 10
|
eqtri |
⊢ ( dom 𝐴 ∩ dom ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) = ∅ |
12 |
|
funun |
⊢ ( ( ( Fun 𝐴 ∧ Fun ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ∧ ( dom 𝐴 ∩ dom ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) = ∅ ) → Fun ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ) |
13 |
11 12
|
mpan2 |
⊢ ( ( Fun 𝐴 ∧ Fun ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) → Fun ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ) |
14 |
2 5 13
|
sylancl |
⊢ ( 𝐴 ∈ No → Fun ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ On ) → Fun ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ) |
16 |
|
dmun |
⊢ dom ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) = ( dom 𝐴 ∪ dom ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) |
17 |
8
|
uneq2i |
⊢ ( dom 𝐴 ∪ dom ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) = ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) |
18 |
16 17
|
eqtri |
⊢ dom ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) = ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) |
19 |
|
nodmon |
⊢ ( 𝐴 ∈ No → dom 𝐴 ∈ On ) |
20 |
|
undif |
⊢ ( dom 𝐴 ⊆ 𝐵 ↔ ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) = 𝐵 ) |
21 |
|
eleq1a |
⊢ ( 𝐵 ∈ On → ( ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) = 𝐵 → ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) ∈ On ) ) |
22 |
21
|
adantl |
⊢ ( ( dom 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) = 𝐵 → ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) ∈ On ) ) |
23 |
20 22
|
syl5bi |
⊢ ( ( dom 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( dom 𝐴 ⊆ 𝐵 → ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) ∈ On ) ) |
24 |
|
ssdif0 |
⊢ ( 𝐵 ⊆ dom 𝐴 ↔ ( 𝐵 ∖ dom 𝐴 ) = ∅ ) |
25 |
|
uneq2 |
⊢ ( ( 𝐵 ∖ dom 𝐴 ) = ∅ → ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) = ( dom 𝐴 ∪ ∅ ) ) |
26 |
|
un0 |
⊢ ( dom 𝐴 ∪ ∅ ) = dom 𝐴 |
27 |
25 26
|
eqtrdi |
⊢ ( ( 𝐵 ∖ dom 𝐴 ) = ∅ → ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) = dom 𝐴 ) |
28 |
27
|
eleq1d |
⊢ ( ( 𝐵 ∖ dom 𝐴 ) = ∅ → ( ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) ∈ On ↔ dom 𝐴 ∈ On ) ) |
29 |
28
|
biimprcd |
⊢ ( dom 𝐴 ∈ On → ( ( 𝐵 ∖ dom 𝐴 ) = ∅ → ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) ∈ On ) ) |
30 |
29
|
adantr |
⊢ ( ( dom 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ∖ dom 𝐴 ) = ∅ → ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) ∈ On ) ) |
31 |
24 30
|
syl5bi |
⊢ ( ( dom 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ dom 𝐴 → ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) ∈ On ) ) |
32 |
|
eloni |
⊢ ( dom 𝐴 ∈ On → Ord dom 𝐴 ) |
33 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
34 |
|
ordtri2or2 |
⊢ ( ( Ord dom 𝐴 ∧ Ord 𝐵 ) → ( dom 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ dom 𝐴 ) ) |
35 |
32 33 34
|
syl2an |
⊢ ( ( dom 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( dom 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ dom 𝐴 ) ) |
36 |
23 31 35
|
mpjaod |
⊢ ( ( dom 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) ∈ On ) |
37 |
19 36
|
sylan |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ On ) → ( dom 𝐴 ∪ ( 𝐵 ∖ dom 𝐴 ) ) ∈ On ) |
38 |
18 37
|
eqeltrid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ On ) → dom ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ∈ On ) |
39 |
|
rnun |
⊢ ran ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) = ( ran 𝐴 ∪ ran ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) |
40 |
|
norn |
⊢ ( 𝐴 ∈ No → ran 𝐴 ⊆ { 1o , 2o } ) |
41 |
40
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ On ) → ran 𝐴 ⊆ { 1o , 2o } ) |
42 |
|
rnxpss |
⊢ ran ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ⊆ { 𝑋 } |
43 |
|
snssi |
⊢ ( 𝑋 ∈ { 1o , 2o } → { 𝑋 } ⊆ { 1o , 2o } ) |
44 |
1 43
|
ax-mp |
⊢ { 𝑋 } ⊆ { 1o , 2o } |
45 |
42 44
|
sstri |
⊢ ran ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ⊆ { 1o , 2o } |
46 |
|
unss |
⊢ ( ( ran 𝐴 ⊆ { 1o , 2o } ∧ ran ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ⊆ { 1o , 2o } ) ↔ ( ran 𝐴 ∪ ran ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ⊆ { 1o , 2o } ) |
47 |
41 45 46
|
sylanblc |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ On ) → ( ran 𝐴 ∪ ran ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ⊆ { 1o , 2o } ) |
48 |
39 47
|
eqsstrid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ On ) → ran ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ⊆ { 1o , 2o } ) |
49 |
|
elno2 |
⊢ ( ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ∈ No ↔ ( Fun ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ∧ dom ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ∈ On ∧ ran ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ⊆ { 1o , 2o } ) ) |
50 |
15 38 48 49
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ On ) → ( 𝐴 ∪ ( ( 𝐵 ∖ dom 𝐴 ) × { 𝑋 } ) ) ∈ No ) |