Step |
Hyp |
Ref |
Expression |
1 |
|
noextend.1 |
|- X e. { 1o , 2o } |
2 |
|
nofun |
|- ( A e. No -> Fun A ) |
3 |
|
fnconstg |
|- ( X e. { 1o , 2o } -> ( ( B \ dom A ) X. { X } ) Fn ( B \ dom A ) ) |
4 |
|
fnfun |
|- ( ( ( B \ dom A ) X. { X } ) Fn ( B \ dom A ) -> Fun ( ( B \ dom A ) X. { X } ) ) |
5 |
1 3 4
|
mp2b |
|- Fun ( ( B \ dom A ) X. { X } ) |
6 |
|
snnzg |
|- ( X e. { 1o , 2o } -> { X } =/= (/) ) |
7 |
|
dmxp |
|- ( { X } =/= (/) -> dom ( ( B \ dom A ) X. { X } ) = ( B \ dom A ) ) |
8 |
1 6 7
|
mp2b |
|- dom ( ( B \ dom A ) X. { X } ) = ( B \ dom A ) |
9 |
8
|
ineq2i |
|- ( dom A i^i dom ( ( B \ dom A ) X. { X } ) ) = ( dom A i^i ( B \ dom A ) ) |
10 |
|
disjdif |
|- ( dom A i^i ( B \ dom A ) ) = (/) |
11 |
9 10
|
eqtri |
|- ( dom A i^i dom ( ( B \ dom A ) X. { X } ) ) = (/) |
12 |
|
funun |
|- ( ( ( Fun A /\ Fun ( ( B \ dom A ) X. { X } ) ) /\ ( dom A i^i dom ( ( B \ dom A ) X. { X } ) ) = (/) ) -> Fun ( A u. ( ( B \ dom A ) X. { X } ) ) ) |
13 |
11 12
|
mpan2 |
|- ( ( Fun A /\ Fun ( ( B \ dom A ) X. { X } ) ) -> Fun ( A u. ( ( B \ dom A ) X. { X } ) ) ) |
14 |
2 5 13
|
sylancl |
|- ( A e. No -> Fun ( A u. ( ( B \ dom A ) X. { X } ) ) ) |
15 |
14
|
adantr |
|- ( ( A e. No /\ B e. On ) -> Fun ( A u. ( ( B \ dom A ) X. { X } ) ) ) |
16 |
|
dmun |
|- dom ( A u. ( ( B \ dom A ) X. { X } ) ) = ( dom A u. dom ( ( B \ dom A ) X. { X } ) ) |
17 |
8
|
uneq2i |
|- ( dom A u. dom ( ( B \ dom A ) X. { X } ) ) = ( dom A u. ( B \ dom A ) ) |
18 |
16 17
|
eqtri |
|- dom ( A u. ( ( B \ dom A ) X. { X } ) ) = ( dom A u. ( B \ dom A ) ) |
19 |
|
nodmon |
|- ( A e. No -> dom A e. On ) |
20 |
|
undif |
|- ( dom A C_ B <-> ( dom A u. ( B \ dom A ) ) = B ) |
21 |
|
eleq1a |
|- ( B e. On -> ( ( dom A u. ( B \ dom A ) ) = B -> ( dom A u. ( B \ dom A ) ) e. On ) ) |
22 |
21
|
adantl |
|- ( ( dom A e. On /\ B e. On ) -> ( ( dom A u. ( B \ dom A ) ) = B -> ( dom A u. ( B \ dom A ) ) e. On ) ) |
23 |
20 22
|
syl5bi |
|- ( ( dom A e. On /\ B e. On ) -> ( dom A C_ B -> ( dom A u. ( B \ dom A ) ) e. On ) ) |
24 |
|
ssdif0 |
|- ( B C_ dom A <-> ( B \ dom A ) = (/) ) |
25 |
|
uneq2 |
|- ( ( B \ dom A ) = (/) -> ( dom A u. ( B \ dom A ) ) = ( dom A u. (/) ) ) |
26 |
|
un0 |
|- ( dom A u. (/) ) = dom A |
27 |
25 26
|
eqtrdi |
|- ( ( B \ dom A ) = (/) -> ( dom A u. ( B \ dom A ) ) = dom A ) |
28 |
27
|
eleq1d |
|- ( ( B \ dom A ) = (/) -> ( ( dom A u. ( B \ dom A ) ) e. On <-> dom A e. On ) ) |
29 |
28
|
biimprcd |
|- ( dom A e. On -> ( ( B \ dom A ) = (/) -> ( dom A u. ( B \ dom A ) ) e. On ) ) |
30 |
29
|
adantr |
|- ( ( dom A e. On /\ B e. On ) -> ( ( B \ dom A ) = (/) -> ( dom A u. ( B \ dom A ) ) e. On ) ) |
31 |
24 30
|
syl5bi |
|- ( ( dom A e. On /\ B e. On ) -> ( B C_ dom A -> ( dom A u. ( B \ dom A ) ) e. On ) ) |
32 |
|
eloni |
|- ( dom A e. On -> Ord dom A ) |
33 |
|
eloni |
|- ( B e. On -> Ord B ) |
34 |
|
ordtri2or2 |
|- ( ( Ord dom A /\ Ord B ) -> ( dom A C_ B \/ B C_ dom A ) ) |
35 |
32 33 34
|
syl2an |
|- ( ( dom A e. On /\ B e. On ) -> ( dom A C_ B \/ B C_ dom A ) ) |
36 |
23 31 35
|
mpjaod |
|- ( ( dom A e. On /\ B e. On ) -> ( dom A u. ( B \ dom A ) ) e. On ) |
37 |
19 36
|
sylan |
|- ( ( A e. No /\ B e. On ) -> ( dom A u. ( B \ dom A ) ) e. On ) |
38 |
18 37
|
eqeltrid |
|- ( ( A e. No /\ B e. On ) -> dom ( A u. ( ( B \ dom A ) X. { X } ) ) e. On ) |
39 |
|
rnun |
|- ran ( A u. ( ( B \ dom A ) X. { X } ) ) = ( ran A u. ran ( ( B \ dom A ) X. { X } ) ) |
40 |
|
norn |
|- ( A e. No -> ran A C_ { 1o , 2o } ) |
41 |
40
|
adantr |
|- ( ( A e. No /\ B e. On ) -> ran A C_ { 1o , 2o } ) |
42 |
|
rnxpss |
|- ran ( ( B \ dom A ) X. { X } ) C_ { X } |
43 |
|
snssi |
|- ( X e. { 1o , 2o } -> { X } C_ { 1o , 2o } ) |
44 |
1 43
|
ax-mp |
|- { X } C_ { 1o , 2o } |
45 |
42 44
|
sstri |
|- ran ( ( B \ dom A ) X. { X } ) C_ { 1o , 2o } |
46 |
|
unss |
|- ( ( ran A C_ { 1o , 2o } /\ ran ( ( B \ dom A ) X. { X } ) C_ { 1o , 2o } ) <-> ( ran A u. ran ( ( B \ dom A ) X. { X } ) ) C_ { 1o , 2o } ) |
47 |
41 45 46
|
sylanblc |
|- ( ( A e. No /\ B e. On ) -> ( ran A u. ran ( ( B \ dom A ) X. { X } ) ) C_ { 1o , 2o } ) |
48 |
39 47
|
eqsstrid |
|- ( ( A e. No /\ B e. On ) -> ran ( A u. ( ( B \ dom A ) X. { X } ) ) C_ { 1o , 2o } ) |
49 |
|
elno2 |
|- ( ( A u. ( ( B \ dom A ) X. { X } ) ) e. No <-> ( Fun ( A u. ( ( B \ dom A ) X. { X } ) ) /\ dom ( A u. ( ( B \ dom A ) X. { X } ) ) e. On /\ ran ( A u. ( ( B \ dom A ) X. { X } ) ) C_ { 1o , 2o } ) ) |
50 |
15 38 48 49
|
syl3anbrc |
|- ( ( A e. No /\ B e. On ) -> ( A u. ( ( B \ dom A ) X. { X } ) ) e. No ) |