Step |
Hyp |
Ref |
Expression |
1 |
|
noextend.1 |
|- X e. { 1o , 2o } |
2 |
|
nodmon |
|- ( A e. No -> dom A e. On ) |
3 |
1
|
nosgnn0i |
|- (/) =/= X |
4 |
3
|
a1i |
|- ( A e. No -> (/) =/= X ) |
5 |
|
nodmord |
|- ( A e. No -> Ord dom A ) |
6 |
|
ordirr |
|- ( Ord dom A -> -. dom A e. dom A ) |
7 |
5 6
|
syl |
|- ( A e. No -> -. dom A e. dom A ) |
8 |
|
ndmfv |
|- ( -. dom A e. dom A -> ( A ` dom A ) = (/) ) |
9 |
7 8
|
syl |
|- ( A e. No -> ( A ` dom A ) = (/) ) |
10 |
|
nofun |
|- ( A e. No -> Fun A ) |
11 |
|
funfn |
|- ( Fun A <-> A Fn dom A ) |
12 |
10 11
|
sylib |
|- ( A e. No -> A Fn dom A ) |
13 |
|
fnsng |
|- ( ( dom A e. On /\ X e. { 1o , 2o } ) -> { <. dom A , X >. } Fn { dom A } ) |
14 |
2 1 13
|
sylancl |
|- ( A e. No -> { <. dom A , X >. } Fn { dom A } ) |
15 |
|
disjsn |
|- ( ( dom A i^i { dom A } ) = (/) <-> -. dom A e. dom A ) |
16 |
7 15
|
sylibr |
|- ( A e. No -> ( dom A i^i { dom A } ) = (/) ) |
17 |
|
snidg |
|- ( dom A e. On -> dom A e. { dom A } ) |
18 |
2 17
|
syl |
|- ( A e. No -> dom A e. { dom A } ) |
19 |
|
fvun2 |
|- ( ( A Fn dom A /\ { <. dom A , X >. } Fn { dom A } /\ ( ( dom A i^i { dom A } ) = (/) /\ dom A e. { dom A } ) ) -> ( ( A u. { <. dom A , X >. } ) ` dom A ) = ( { <. dom A , X >. } ` dom A ) ) |
20 |
12 14 16 18 19
|
syl112anc |
|- ( A e. No -> ( ( A u. { <. dom A , X >. } ) ` dom A ) = ( { <. dom A , X >. } ` dom A ) ) |
21 |
|
fvsng |
|- ( ( dom A e. On /\ X e. { 1o , 2o } ) -> ( { <. dom A , X >. } ` dom A ) = X ) |
22 |
2 1 21
|
sylancl |
|- ( A e. No -> ( { <. dom A , X >. } ` dom A ) = X ) |
23 |
20 22
|
eqtrd |
|- ( A e. No -> ( ( A u. { <. dom A , X >. } ) ` dom A ) = X ) |
24 |
4 9 23
|
3netr4d |
|- ( A e. No -> ( A ` dom A ) =/= ( ( A u. { <. dom A , X >. } ) ` dom A ) ) |
25 |
|
fveq2 |
|- ( x = dom A -> ( A ` x ) = ( A ` dom A ) ) |
26 |
|
fveq2 |
|- ( x = dom A -> ( ( A u. { <. dom A , X >. } ) ` x ) = ( ( A u. { <. dom A , X >. } ) ` dom A ) ) |
27 |
25 26
|
neeq12d |
|- ( x = dom A -> ( ( A ` x ) =/= ( ( A u. { <. dom A , X >. } ) ` x ) <-> ( A ` dom A ) =/= ( ( A u. { <. dom A , X >. } ) ` dom A ) ) ) |
28 |
27
|
onintss |
|- ( dom A e. On -> ( ( A ` dom A ) =/= ( ( A u. { <. dom A , X >. } ) ` dom A ) -> |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , X >. } ) ` x ) } C_ dom A ) ) |
29 |
2 24 28
|
sylc |
|- ( A e. No -> |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , X >. } ) ` x ) } C_ dom A ) |
30 |
|
eloni |
|- ( y e. On -> Ord y ) |
31 |
|
ordtri2 |
|- ( ( Ord y /\ Ord dom A ) -> ( y e. dom A <-> -. ( y = dom A \/ dom A e. y ) ) ) |
32 |
|
eqcom |
|- ( y = dom A <-> dom A = y ) |
33 |
32
|
orbi1i |
|- ( ( y = dom A \/ dom A e. y ) <-> ( dom A = y \/ dom A e. y ) ) |
34 |
|
orcom |
|- ( ( dom A = y \/ dom A e. y ) <-> ( dom A e. y \/ dom A = y ) ) |
35 |
33 34
|
bitri |
|- ( ( y = dom A \/ dom A e. y ) <-> ( dom A e. y \/ dom A = y ) ) |
36 |
35
|
notbii |
|- ( -. ( y = dom A \/ dom A e. y ) <-> -. ( dom A e. y \/ dom A = y ) ) |
37 |
31 36
|
bitrdi |
|- ( ( Ord y /\ Ord dom A ) -> ( y e. dom A <-> -. ( dom A e. y \/ dom A = y ) ) ) |
38 |
|
ordsseleq |
|- ( ( Ord dom A /\ Ord y ) -> ( dom A C_ y <-> ( dom A e. y \/ dom A = y ) ) ) |
39 |
38
|
notbid |
|- ( ( Ord dom A /\ Ord y ) -> ( -. dom A C_ y <-> -. ( dom A e. y \/ dom A = y ) ) ) |
40 |
39
|
ancoms |
|- ( ( Ord y /\ Ord dom A ) -> ( -. dom A C_ y <-> -. ( dom A e. y \/ dom A = y ) ) ) |
41 |
37 40
|
bitr4d |
|- ( ( Ord y /\ Ord dom A ) -> ( y e. dom A <-> -. dom A C_ y ) ) |
42 |
30 5 41
|
syl2anr |
|- ( ( A e. No /\ y e. On ) -> ( y e. dom A <-> -. dom A C_ y ) ) |
43 |
12
|
3ad2ant1 |
|- ( ( A e. No /\ y e. On /\ y e. dom A ) -> A Fn dom A ) |
44 |
14
|
3ad2ant1 |
|- ( ( A e. No /\ y e. On /\ y e. dom A ) -> { <. dom A , X >. } Fn { dom A } ) |
45 |
16
|
3ad2ant1 |
|- ( ( A e. No /\ y e. On /\ y e. dom A ) -> ( dom A i^i { dom A } ) = (/) ) |
46 |
|
simp3 |
|- ( ( A e. No /\ y e. On /\ y e. dom A ) -> y e. dom A ) |
47 |
|
fvun1 |
|- ( ( A Fn dom A /\ { <. dom A , X >. } Fn { dom A } /\ ( ( dom A i^i { dom A } ) = (/) /\ y e. dom A ) ) -> ( ( A u. { <. dom A , X >. } ) ` y ) = ( A ` y ) ) |
48 |
43 44 45 46 47
|
syl112anc |
|- ( ( A e. No /\ y e. On /\ y e. dom A ) -> ( ( A u. { <. dom A , X >. } ) ` y ) = ( A ` y ) ) |
49 |
48
|
eqcomd |
|- ( ( A e. No /\ y e. On /\ y e. dom A ) -> ( A ` y ) = ( ( A u. { <. dom A , X >. } ) ` y ) ) |
50 |
49
|
3expia |
|- ( ( A e. No /\ y e. On ) -> ( y e. dom A -> ( A ` y ) = ( ( A u. { <. dom A , X >. } ) ` y ) ) ) |
51 |
42 50
|
sylbird |
|- ( ( A e. No /\ y e. On ) -> ( -. dom A C_ y -> ( A ` y ) = ( ( A u. { <. dom A , X >. } ) ` y ) ) ) |
52 |
51
|
necon1ad |
|- ( ( A e. No /\ y e. On ) -> ( ( A ` y ) =/= ( ( A u. { <. dom A , X >. } ) ` y ) -> dom A C_ y ) ) |
53 |
52
|
ralrimiva |
|- ( A e. No -> A. y e. On ( ( A ` y ) =/= ( ( A u. { <. dom A , X >. } ) ` y ) -> dom A C_ y ) ) |
54 |
|
fveq2 |
|- ( x = y -> ( A ` x ) = ( A ` y ) ) |
55 |
|
fveq2 |
|- ( x = y -> ( ( A u. { <. dom A , X >. } ) ` x ) = ( ( A u. { <. dom A , X >. } ) ` y ) ) |
56 |
54 55
|
neeq12d |
|- ( x = y -> ( ( A ` x ) =/= ( ( A u. { <. dom A , X >. } ) ` x ) <-> ( A ` y ) =/= ( ( A u. { <. dom A , X >. } ) ` y ) ) ) |
57 |
56
|
ralrab |
|- ( A. y e. { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , X >. } ) ` x ) } dom A C_ y <-> A. y e. On ( ( A ` y ) =/= ( ( A u. { <. dom A , X >. } ) ` y ) -> dom A C_ y ) ) |
58 |
53 57
|
sylibr |
|- ( A e. No -> A. y e. { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , X >. } ) ` x ) } dom A C_ y ) |
59 |
|
ssint |
|- ( dom A C_ |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , X >. } ) ` x ) } <-> A. y e. { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , X >. } ) ` x ) } dom A C_ y ) |
60 |
58 59
|
sylibr |
|- ( A e. No -> dom A C_ |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , X >. } ) ` x ) } ) |
61 |
29 60
|
eqssd |
|- ( A e. No -> |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , X >. } ) ` x ) } = dom A ) |