| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nofun |
|- ( A e. No -> Fun A ) |
| 2 |
|
funfn |
|- ( Fun A <-> A Fn dom A ) |
| 3 |
1 2
|
sylib |
|- ( A e. No -> A Fn dom A ) |
| 4 |
|
nodmon |
|- ( A e. No -> dom A e. On ) |
| 5 |
|
1on |
|- 1o e. On |
| 6 |
|
fnsng |
|- ( ( dom A e. On /\ 1o e. On ) -> { <. dom A , 1o >. } Fn { dom A } ) |
| 7 |
4 5 6
|
sylancl |
|- ( A e. No -> { <. dom A , 1o >. } Fn { dom A } ) |
| 8 |
|
nodmord |
|- ( A e. No -> Ord dom A ) |
| 9 |
|
ordirr |
|- ( Ord dom A -> -. dom A e. dom A ) |
| 10 |
8 9
|
syl |
|- ( A e. No -> -. dom A e. dom A ) |
| 11 |
|
disjsn |
|- ( ( dom A i^i { dom A } ) = (/) <-> -. dom A e. dom A ) |
| 12 |
10 11
|
sylibr |
|- ( A e. No -> ( dom A i^i { dom A } ) = (/) ) |
| 13 |
|
snidg |
|- ( dom A e. On -> dom A e. { dom A } ) |
| 14 |
4 13
|
syl |
|- ( A e. No -> dom A e. { dom A } ) |
| 15 |
|
fvun2 |
|- ( ( A Fn dom A /\ { <. dom A , 1o >. } Fn { dom A } /\ ( ( dom A i^i { dom A } ) = (/) /\ dom A e. { dom A } ) ) -> ( ( A u. { <. dom A , 1o >. } ) ` dom A ) = ( { <. dom A , 1o >. } ` dom A ) ) |
| 16 |
3 7 12 14 15
|
syl112anc |
|- ( A e. No -> ( ( A u. { <. dom A , 1o >. } ) ` dom A ) = ( { <. dom A , 1o >. } ` dom A ) ) |
| 17 |
|
fvsng |
|- ( ( dom A e. On /\ 1o e. On ) -> ( { <. dom A , 1o >. } ` dom A ) = 1o ) |
| 18 |
4 5 17
|
sylancl |
|- ( A e. No -> ( { <. dom A , 1o >. } ` dom A ) = 1o ) |
| 19 |
16 18
|
eqtrd |
|- ( A e. No -> ( ( A u. { <. dom A , 1o >. } ) ` dom A ) = 1o ) |
| 20 |
|
ndmfv |
|- ( -. dom A e. dom A -> ( A ` dom A ) = (/) ) |
| 21 |
10 20
|
syl |
|- ( A e. No -> ( A ` dom A ) = (/) ) |
| 22 |
19 21
|
jca |
|- ( A e. No -> ( ( ( A u. { <. dom A , 1o >. } ) ` dom A ) = 1o /\ ( A ` dom A ) = (/) ) ) |
| 23 |
22
|
3mix1d |
|- ( A e. No -> ( ( ( ( A u. { <. dom A , 1o >. } ) ` dom A ) = 1o /\ ( A ` dom A ) = (/) ) \/ ( ( ( A u. { <. dom A , 1o >. } ) ` dom A ) = 1o /\ ( A ` dom A ) = 2o ) \/ ( ( ( A u. { <. dom A , 1o >. } ) ` dom A ) = (/) /\ ( A ` dom A ) = 2o ) ) ) |
| 24 |
|
fvex |
|- ( ( A u. { <. dom A , 1o >. } ) ` dom A ) e. _V |
| 25 |
|
fvex |
|- ( A ` dom A ) e. _V |
| 26 |
24 25
|
brtp |
|- ( ( ( A u. { <. dom A , 1o >. } ) ` dom A ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` dom A ) <-> ( ( ( ( A u. { <. dom A , 1o >. } ) ` dom A ) = 1o /\ ( A ` dom A ) = (/) ) \/ ( ( ( A u. { <. dom A , 1o >. } ) ` dom A ) = 1o /\ ( A ` dom A ) = 2o ) \/ ( ( ( A u. { <. dom A , 1o >. } ) ` dom A ) = (/) /\ ( A ` dom A ) = 2o ) ) ) |
| 27 |
23 26
|
sylibr |
|- ( A e. No -> ( ( A u. { <. dom A , 1o >. } ) ` dom A ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` dom A ) ) |
| 28 |
|
necom |
|- ( ( ( A u. { <. dom A , 1o >. } ) ` x ) =/= ( A ` x ) <-> ( A ` x ) =/= ( ( A u. { <. dom A , 1o >. } ) ` x ) ) |
| 29 |
28
|
rabbii |
|- { x e. On | ( ( A u. { <. dom A , 1o >. } ) ` x ) =/= ( A ` x ) } = { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 1o >. } ) ` x ) } |
| 30 |
29
|
inteqi |
|- |^| { x e. On | ( ( A u. { <. dom A , 1o >. } ) ` x ) =/= ( A ` x ) } = |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 1o >. } ) ` x ) } |
| 31 |
|
1oex |
|- 1o e. _V |
| 32 |
31
|
prid1 |
|- 1o e. { 1o , 2o } |
| 33 |
32
|
noextenddif |
|- ( A e. No -> |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 1o >. } ) ` x ) } = dom A ) |
| 34 |
30 33
|
eqtrid |
|- ( A e. No -> |^| { x e. On | ( ( A u. { <. dom A , 1o >. } ) ` x ) =/= ( A ` x ) } = dom A ) |
| 35 |
34
|
fveq2d |
|- ( A e. No -> ( ( A u. { <. dom A , 1o >. } ) ` |^| { x e. On | ( ( A u. { <. dom A , 1o >. } ) ` x ) =/= ( A ` x ) } ) = ( ( A u. { <. dom A , 1o >. } ) ` dom A ) ) |
| 36 |
34
|
fveq2d |
|- ( A e. No -> ( A ` |^| { x e. On | ( ( A u. { <. dom A , 1o >. } ) ` x ) =/= ( A ` x ) } ) = ( A ` dom A ) ) |
| 37 |
27 35 36
|
3brtr4d |
|- ( A e. No -> ( ( A u. { <. dom A , 1o >. } ) ` |^| { x e. On | ( ( A u. { <. dom A , 1o >. } ) ` x ) =/= ( A ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` |^| { x e. On | ( ( A u. { <. dom A , 1o >. } ) ` x ) =/= ( A ` x ) } ) ) |
| 38 |
32
|
noextend |
|- ( A e. No -> ( A u. { <. dom A , 1o >. } ) e. No ) |
| 39 |
|
sltval2 |
|- ( ( ( A u. { <. dom A , 1o >. } ) e. No /\ A e. No ) -> ( ( A u. { <. dom A , 1o >. } ) ( ( A u. { <. dom A , 1o >. } ) ` |^| { x e. On | ( ( A u. { <. dom A , 1o >. } ) ` x ) =/= ( A ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` |^| { x e. On | ( ( A u. { <. dom A , 1o >. } ) ` x ) =/= ( A ` x ) } ) ) ) |
| 40 |
38 39
|
mpancom |
|- ( A e. No -> ( ( A u. { <. dom A , 1o >. } ) ( ( A u. { <. dom A , 1o >. } ) ` |^| { x e. On | ( ( A u. { <. dom A , 1o >. } ) ` x ) =/= ( A ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` |^| { x e. On | ( ( A u. { <. dom A , 1o >. } ) ` x ) =/= ( A ` x ) } ) ) ) |
| 41 |
37 40
|
mpbird |
|- ( A e. No -> ( A u. { <. dom A , 1o >. } ) |