Step |
Hyp |
Ref |
Expression |
1 |
|
noextend.1 |
|- X e. { 1o , 2o } |
2 |
|
nofun |
|- ( A e. No -> Fun A ) |
3 |
|
dmexg |
|- ( A e. No -> dom A e. _V ) |
4 |
|
funsng |
|- ( ( dom A e. _V /\ X e. { 1o , 2o } ) -> Fun { <. dom A , X >. } ) |
5 |
3 1 4
|
sylancl |
|- ( A e. No -> Fun { <. dom A , X >. } ) |
6 |
1
|
elexi |
|- X e. _V |
7 |
6
|
dmsnop |
|- dom { <. dom A , X >. } = { dom A } |
8 |
7
|
ineq2i |
|- ( dom A i^i dom { <. dom A , X >. } ) = ( dom A i^i { dom A } ) |
9 |
|
nodmord |
|- ( A e. No -> Ord dom A ) |
10 |
|
ordirr |
|- ( Ord dom A -> -. dom A e. dom A ) |
11 |
9 10
|
syl |
|- ( A e. No -> -. dom A e. dom A ) |
12 |
|
disjsn |
|- ( ( dom A i^i { dom A } ) = (/) <-> -. dom A e. dom A ) |
13 |
11 12
|
sylibr |
|- ( A e. No -> ( dom A i^i { dom A } ) = (/) ) |
14 |
8 13
|
syl5eq |
|- ( A e. No -> ( dom A i^i dom { <. dom A , X >. } ) = (/) ) |
15 |
|
funun |
|- ( ( ( Fun A /\ Fun { <. dom A , X >. } ) /\ ( dom A i^i dom { <. dom A , X >. } ) = (/) ) -> Fun ( A u. { <. dom A , X >. } ) ) |
16 |
2 5 14 15
|
syl21anc |
|- ( A e. No -> Fun ( A u. { <. dom A , X >. } ) ) |
17 |
7
|
uneq2i |
|- ( dom A u. dom { <. dom A , X >. } ) = ( dom A u. { dom A } ) |
18 |
|
dmun |
|- dom ( A u. { <. dom A , X >. } ) = ( dom A u. dom { <. dom A , X >. } ) |
19 |
|
df-suc |
|- suc dom A = ( dom A u. { dom A } ) |
20 |
17 18 19
|
3eqtr4i |
|- dom ( A u. { <. dom A , X >. } ) = suc dom A |
21 |
|
nodmon |
|- ( A e. No -> dom A e. On ) |
22 |
|
suceloni |
|- ( dom A e. On -> suc dom A e. On ) |
23 |
21 22
|
syl |
|- ( A e. No -> suc dom A e. On ) |
24 |
20 23
|
eqeltrid |
|- ( A e. No -> dom ( A u. { <. dom A , X >. } ) e. On ) |
25 |
|
rnun |
|- ran ( A u. { <. dom A , X >. } ) = ( ran A u. ran { <. dom A , X >. } ) |
26 |
|
rnsnopg |
|- ( dom A e. _V -> ran { <. dom A , X >. } = { X } ) |
27 |
3 26
|
syl |
|- ( A e. No -> ran { <. dom A , X >. } = { X } ) |
28 |
27
|
uneq2d |
|- ( A e. No -> ( ran A u. ran { <. dom A , X >. } ) = ( ran A u. { X } ) ) |
29 |
25 28
|
syl5eq |
|- ( A e. No -> ran ( A u. { <. dom A , X >. } ) = ( ran A u. { X } ) ) |
30 |
|
norn |
|- ( A e. No -> ran A C_ { 1o , 2o } ) |
31 |
|
snssi |
|- ( X e. { 1o , 2o } -> { X } C_ { 1o , 2o } ) |
32 |
1 31
|
mp1i |
|- ( A e. No -> { X } C_ { 1o , 2o } ) |
33 |
30 32
|
unssd |
|- ( A e. No -> ( ran A u. { X } ) C_ { 1o , 2o } ) |
34 |
29 33
|
eqsstrd |
|- ( A e. No -> ran ( A u. { <. dom A , X >. } ) C_ { 1o , 2o } ) |
35 |
|
elno2 |
|- ( ( A u. { <. dom A , X >. } ) e. No <-> ( Fun ( A u. { <. dom A , X >. } ) /\ dom ( A u. { <. dom A , X >. } ) e. On /\ ran ( A u. { <. dom A , X >. } ) C_ { 1o , 2o } ) ) |
36 |
16 24 34 35
|
syl3anbrc |
|- ( A e. No -> ( A u. { <. dom A , X >. } ) e. No ) |