Metamath Proof Explorer


Theorem noextendlt

Description: Extending a surreal with a negative sign results in a smaller surreal. (Contributed by Scott Fenton, 22-Nov-2021)

Ref Expression
Assertion noextendlt A No A dom A 1 𝑜 < s A

Proof

Step Hyp Ref Expression
1 nofun A No Fun A
2 funfn Fun A A Fn dom A
3 1 2 sylib A No A Fn dom A
4 nodmon A No dom A On
5 1on 1 𝑜 On
6 fnsng dom A On 1 𝑜 On dom A 1 𝑜 Fn dom A
7 4 5 6 sylancl A No dom A 1 𝑜 Fn dom A
8 nodmord A No Ord dom A
9 ordirr Ord dom A ¬ dom A dom A
10 8 9 syl A No ¬ dom A dom A
11 disjsn dom A dom A = ¬ dom A dom A
12 10 11 sylibr A No dom A dom A =
13 snidg dom A On dom A dom A
14 4 13 syl A No dom A dom A
15 fvun2 A Fn dom A dom A 1 𝑜 Fn dom A dom A dom A = dom A dom A A dom A 1 𝑜 dom A = dom A 1 𝑜 dom A
16 3 7 12 14 15 syl112anc A No A dom A 1 𝑜 dom A = dom A 1 𝑜 dom A
17 fvsng dom A On 1 𝑜 On dom A 1 𝑜 dom A = 1 𝑜
18 4 5 17 sylancl A No dom A 1 𝑜 dom A = 1 𝑜
19 16 18 eqtrd A No A dom A 1 𝑜 dom A = 1 𝑜
20 ndmfv ¬ dom A dom A A dom A =
21 10 20 syl A No A dom A =
22 19 21 jca A No A dom A 1 𝑜 dom A = 1 𝑜 A dom A =
23 22 3mix1d A No A dom A 1 𝑜 dom A = 1 𝑜 A dom A = A dom A 1 𝑜 dom A = 1 𝑜 A dom A = 2 𝑜 A dom A 1 𝑜 dom A = A dom A = 2 𝑜
24 fvex A dom A 1 𝑜 dom A V
25 fvex A dom A V
26 24 25 brtp A dom A 1 𝑜 dom A 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A dom A A dom A 1 𝑜 dom A = 1 𝑜 A dom A = A dom A 1 𝑜 dom A = 1 𝑜 A dom A = 2 𝑜 A dom A 1 𝑜 dom A = A dom A = 2 𝑜
27 23 26 sylibr A No A dom A 1 𝑜 dom A 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A dom A
28 necom A dom A 1 𝑜 x A x A x A dom A 1 𝑜 x
29 28 rabbii x On | A dom A 1 𝑜 x A x = x On | A x A dom A 1 𝑜 x
30 29 inteqi x On | A dom A 1 𝑜 x A x = x On | A x A dom A 1 𝑜 x
31 1oex 1 𝑜 V
32 31 prid1 1 𝑜 1 𝑜 2 𝑜
33 32 noextenddif A No x On | A x A dom A 1 𝑜 x = dom A
34 30 33 eqtrid A No x On | A dom A 1 𝑜 x A x = dom A
35 34 fveq2d A No A dom A 1 𝑜 x On | A dom A 1 𝑜 x A x = A dom A 1 𝑜 dom A
36 34 fveq2d A No A x On | A dom A 1 𝑜 x A x = A dom A
37 27 35 36 3brtr4d A No A dom A 1 𝑜 x On | A dom A 1 𝑜 x A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A x On | A dom A 1 𝑜 x A x
38 32 noextend A No A dom A 1 𝑜 No
39 sltval2 A dom A 1 𝑜 No A No A dom A 1 𝑜 < s A A dom A 1 𝑜 x On | A dom A 1 𝑜 x A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A x On | A dom A 1 𝑜 x A x
40 38 39 mpancom A No A dom A 1 𝑜 < s A A dom A 1 𝑜 x On | A dom A 1 𝑜 x A x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A x On | A dom A 1 𝑜 x A x
41 37 40 mpbird A No A dom A 1 𝑜 < s A