Metamath Proof Explorer


Theorem noextendgt

Description: Extending a surreal with a positive sign results in a bigger surreal. (Contributed by Scott Fenton, 22-Nov-2021)

Ref Expression
Assertion noextendgt A No A < s A dom A 2 𝑜

Proof

Step Hyp Ref Expression
1 nodmord A No Ord dom A
2 ordirr Ord dom A ¬ dom A dom A
3 1 2 syl A No ¬ dom A dom A
4 ndmfv ¬ dom A dom A A dom A =
5 3 4 syl A No A dom A =
6 nofun A No Fun A
7 funfn Fun A A Fn dom A
8 6 7 sylib A No A Fn dom A
9 nodmon A No dom A On
10 2on 2 𝑜 On
11 fnsng dom A On 2 𝑜 On dom A 2 𝑜 Fn dom A
12 9 10 11 sylancl A No dom A 2 𝑜 Fn dom A
13 disjsn dom A dom A = ¬ dom A dom A
14 3 13 sylibr A No dom A dom A =
15 snidg dom A On dom A dom A
16 9 15 syl A No dom A dom A
17 fvun2 A Fn dom A dom A 2 𝑜 Fn dom A dom A dom A = dom A dom A A dom A 2 𝑜 dom A = dom A 2 𝑜 dom A
18 8 12 14 16 17 syl112anc A No A dom A 2 𝑜 dom A = dom A 2 𝑜 dom A
19 fvsng dom A On 2 𝑜 On dom A 2 𝑜 dom A = 2 𝑜
20 9 10 19 sylancl A No dom A 2 𝑜 dom A = 2 𝑜
21 18 20 eqtrd A No A dom A 2 𝑜 dom A = 2 𝑜
22 5 21 jca A No A dom A = A dom A 2 𝑜 dom A = 2 𝑜
23 22 3mix3d A No A dom A = 1 𝑜 A dom A 2 𝑜 dom A = A dom A = 1 𝑜 A dom A 2 𝑜 dom A = 2 𝑜 A dom A = A dom A 2 𝑜 dom A = 2 𝑜
24 fvex A dom A V
25 fvex A dom A 2 𝑜 dom A V
26 24 25 brtp A dom A 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A dom A 2 𝑜 dom A A dom A = 1 𝑜 A dom A 2 𝑜 dom A = A dom A = 1 𝑜 A dom A 2 𝑜 dom A = 2 𝑜 A dom A = A dom A 2 𝑜 dom A = 2 𝑜
27 23 26 sylibr A No A dom A 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A dom A 2 𝑜 dom A
28 10 elexi 2 𝑜 V
29 28 prid2 2 𝑜 1 𝑜 2 𝑜
30 29 noextenddif A No x On | A x A dom A 2 𝑜 x = dom A
31 30 fveq2d A No A x On | A x A dom A 2 𝑜 x = A dom A
32 30 fveq2d A No A dom A 2 𝑜 x On | A x A dom A 2 𝑜 x = A dom A 2 𝑜 dom A
33 27 31 32 3brtr4d A No A x On | A x A dom A 2 𝑜 x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A dom A 2 𝑜 x On | A x A dom A 2 𝑜 x
34 29 noextend A No A dom A 2 𝑜 No
35 sltval2 A No A dom A 2 𝑜 No A < s A dom A 2 𝑜 A x On | A x A dom A 2 𝑜 x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A dom A 2 𝑜 x On | A x A dom A 2 𝑜 x
36 34 35 mpdan A No A < s A dom A 2 𝑜 A x On | A x A dom A 2 𝑜 x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 A dom A 2 𝑜 x On | A x A dom A 2 𝑜 x
37 33 36 mpbird A No A < s A dom A 2 𝑜