Step |
Hyp |
Ref |
Expression |
1 |
|
nodmord |
|- ( A e. No -> Ord dom A ) |
2 |
|
ordirr |
|- ( Ord dom A -> -. dom A e. dom A ) |
3 |
1 2
|
syl |
|- ( A e. No -> -. dom A e. dom A ) |
4 |
|
ndmfv |
|- ( -. dom A e. dom A -> ( A ` dom A ) = (/) ) |
5 |
3 4
|
syl |
|- ( A e. No -> ( A ` dom A ) = (/) ) |
6 |
|
nofun |
|- ( A e. No -> Fun A ) |
7 |
|
funfn |
|- ( Fun A <-> A Fn dom A ) |
8 |
6 7
|
sylib |
|- ( A e. No -> A Fn dom A ) |
9 |
|
nodmon |
|- ( A e. No -> dom A e. On ) |
10 |
|
2on |
|- 2o e. On |
11 |
|
fnsng |
|- ( ( dom A e. On /\ 2o e. On ) -> { <. dom A , 2o >. } Fn { dom A } ) |
12 |
9 10 11
|
sylancl |
|- ( A e. No -> { <. dom A , 2o >. } Fn { dom A } ) |
13 |
|
disjsn |
|- ( ( dom A i^i { dom A } ) = (/) <-> -. dom A e. dom A ) |
14 |
3 13
|
sylibr |
|- ( A e. No -> ( dom A i^i { dom A } ) = (/) ) |
15 |
|
snidg |
|- ( dom A e. On -> dom A e. { dom A } ) |
16 |
9 15
|
syl |
|- ( A e. No -> dom A e. { dom A } ) |
17 |
|
fvun2 |
|- ( ( A Fn dom A /\ { <. dom A , 2o >. } Fn { dom A } /\ ( ( dom A i^i { dom A } ) = (/) /\ dom A e. { dom A } ) ) -> ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = ( { <. dom A , 2o >. } ` dom A ) ) |
18 |
8 12 14 16 17
|
syl112anc |
|- ( A e. No -> ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = ( { <. dom A , 2o >. } ` dom A ) ) |
19 |
|
fvsng |
|- ( ( dom A e. On /\ 2o e. On ) -> ( { <. dom A , 2o >. } ` dom A ) = 2o ) |
20 |
9 10 19
|
sylancl |
|- ( A e. No -> ( { <. dom A , 2o >. } ` dom A ) = 2o ) |
21 |
18 20
|
eqtrd |
|- ( A e. No -> ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = 2o ) |
22 |
5 21
|
jca |
|- ( A e. No -> ( ( A ` dom A ) = (/) /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = 2o ) ) |
23 |
22
|
3mix3d |
|- ( A e. No -> ( ( ( A ` dom A ) = 1o /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = (/) ) \/ ( ( A ` dom A ) = 1o /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = 2o ) \/ ( ( A ` dom A ) = (/) /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = 2o ) ) ) |
24 |
|
fvex |
|- ( A ` dom A ) e. _V |
25 |
|
fvex |
|- ( ( A u. { <. dom A , 2o >. } ) ` dom A ) e. _V |
26 |
24 25
|
brtp |
|- ( ( A ` dom A ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A u. { <. dom A , 2o >. } ) ` dom A ) <-> ( ( ( A ` dom A ) = 1o /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = (/) ) \/ ( ( A ` dom A ) = 1o /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = 2o ) \/ ( ( A ` dom A ) = (/) /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = 2o ) ) ) |
27 |
23 26
|
sylibr |
|- ( A e. No -> ( A ` dom A ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A u. { <. dom A , 2o >. } ) ` dom A ) ) |
28 |
10
|
elexi |
|- 2o e. _V |
29 |
28
|
prid2 |
|- 2o e. { 1o , 2o } |
30 |
29
|
noextenddif |
|- ( A e. No -> |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } = dom A ) |
31 |
30
|
fveq2d |
|- ( A e. No -> ( A ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) = ( A ` dom A ) ) |
32 |
30
|
fveq2d |
|- ( A e. No -> ( ( A u. { <. dom A , 2o >. } ) ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) = ( ( A u. { <. dom A , 2o >. } ) ` dom A ) ) |
33 |
27 31 32
|
3brtr4d |
|- ( A e. No -> ( A ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A u. { <. dom A , 2o >. } ) ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) ) |
34 |
29
|
noextend |
|- ( A e. No -> ( A u. { <. dom A , 2o >. } ) e. No ) |
35 |
|
sltval2 |
|- ( ( A e. No /\ ( A u. { <. dom A , 2o >. } ) e. No ) -> ( A . } ) <-> ( A ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A u. { <. dom A , 2o >. } ) ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) ) ) |
36 |
34 35
|
mpdan |
|- ( A e. No -> ( A . } ) <-> ( A ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A u. { <. dom A , 2o >. } ) ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) ) ) |
37 |
33 36
|
mpbird |
|- ( A e. No -> A . } ) ) |