Metamath Proof Explorer


Theorem noextendgt

Description: Extending a surreal with a positive sign results in a bigger surreal. (Contributed by Scott Fenton, 22-Nov-2021)

Ref Expression
Assertion noextendgt
|- ( A e. No -> A . } ) )

Proof

Step Hyp Ref Expression
1 nodmord
 |-  ( A e. No -> Ord dom A )
2 ordirr
 |-  ( Ord dom A -> -. dom A e. dom A )
3 1 2 syl
 |-  ( A e. No -> -. dom A e. dom A )
4 ndmfv
 |-  ( -. dom A e. dom A -> ( A ` dom A ) = (/) )
5 3 4 syl
 |-  ( A e. No -> ( A ` dom A ) = (/) )
6 nofun
 |-  ( A e. No -> Fun A )
7 funfn
 |-  ( Fun A <-> A Fn dom A )
8 6 7 sylib
 |-  ( A e. No -> A Fn dom A )
9 nodmon
 |-  ( A e. No -> dom A e. On )
10 2on
 |-  2o e. On
11 fnsng
 |-  ( ( dom A e. On /\ 2o e. On ) -> { <. dom A , 2o >. } Fn { dom A } )
12 9 10 11 sylancl
 |-  ( A e. No -> { <. dom A , 2o >. } Fn { dom A } )
13 disjsn
 |-  ( ( dom A i^i { dom A } ) = (/) <-> -. dom A e. dom A )
14 3 13 sylibr
 |-  ( A e. No -> ( dom A i^i { dom A } ) = (/) )
15 snidg
 |-  ( dom A e. On -> dom A e. { dom A } )
16 9 15 syl
 |-  ( A e. No -> dom A e. { dom A } )
17 fvun2
 |-  ( ( A Fn dom A /\ { <. dom A , 2o >. } Fn { dom A } /\ ( ( dom A i^i { dom A } ) = (/) /\ dom A e. { dom A } ) ) -> ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = ( { <. dom A , 2o >. } ` dom A ) )
18 8 12 14 16 17 syl112anc
 |-  ( A e. No -> ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = ( { <. dom A , 2o >. } ` dom A ) )
19 fvsng
 |-  ( ( dom A e. On /\ 2o e. On ) -> ( { <. dom A , 2o >. } ` dom A ) = 2o )
20 9 10 19 sylancl
 |-  ( A e. No -> ( { <. dom A , 2o >. } ` dom A ) = 2o )
21 18 20 eqtrd
 |-  ( A e. No -> ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = 2o )
22 5 21 jca
 |-  ( A e. No -> ( ( A ` dom A ) = (/) /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = 2o ) )
23 22 3mix3d
 |-  ( A e. No -> ( ( ( A ` dom A ) = 1o /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = (/) ) \/ ( ( A ` dom A ) = 1o /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = 2o ) \/ ( ( A ` dom A ) = (/) /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = 2o ) ) )
24 fvex
 |-  ( A ` dom A ) e. _V
25 fvex
 |-  ( ( A u. { <. dom A , 2o >. } ) ` dom A ) e. _V
26 24 25 brtp
 |-  ( ( A ` dom A ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A u. { <. dom A , 2o >. } ) ` dom A ) <-> ( ( ( A ` dom A ) = 1o /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = (/) ) \/ ( ( A ` dom A ) = 1o /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = 2o ) \/ ( ( A ` dom A ) = (/) /\ ( ( A u. { <. dom A , 2o >. } ) ` dom A ) = 2o ) ) )
27 23 26 sylibr
 |-  ( A e. No -> ( A ` dom A ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A u. { <. dom A , 2o >. } ) ` dom A ) )
28 10 elexi
 |-  2o e. _V
29 28 prid2
 |-  2o e. { 1o , 2o }
30 29 noextenddif
 |-  ( A e. No -> |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } = dom A )
31 30 fveq2d
 |-  ( A e. No -> ( A ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) = ( A ` dom A ) )
32 30 fveq2d
 |-  ( A e. No -> ( ( A u. { <. dom A , 2o >. } ) ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) = ( ( A u. { <. dom A , 2o >. } ) ` dom A ) )
33 27 31 32 3brtr4d
 |-  ( A e. No -> ( A ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A u. { <. dom A , 2o >. } ) ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) )
34 29 noextend
 |-  ( A e. No -> ( A u. { <. dom A , 2o >. } ) e. No )
35 sltval2
 |-  ( ( A e. No /\ ( A u. { <. dom A , 2o >. } ) e. No ) -> ( A . } ) <-> ( A ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A u. { <. dom A , 2o >. } ) ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) ) )
36 34 35 mpdan
 |-  ( A e. No -> ( A . } ) <-> ( A ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A u. { <. dom A , 2o >. } ) ` |^| { x e. On | ( A ` x ) =/= ( ( A u. { <. dom A , 2o >. } ) ` x ) } ) ) )
37 33 36 mpbird
 |-  ( A e. No -> A . } ) )