Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) ) -> B e. No ) |
2 |
|
nofv |
|- ( B e. No -> ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) ) |
3 |
1 2
|
syl |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) ) -> ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) ) |
4 |
|
3orel3 |
|- ( -. ( B ` X ) = 2o -> ( ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) -> ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) ) |
5 |
3 4
|
syl5com |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) ) -> ( -. ( B ` X ) = 2o -> ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) ) |
6 |
|
simp13 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) -> X e. On ) |
7 |
|
fveq1 |
|- ( ( A |` X ) = ( B |` X ) -> ( ( A |` X ) ` y ) = ( ( B |` X ) ` y ) ) |
8 |
7
|
eqcomd |
|- ( ( A |` X ) = ( B |` X ) -> ( ( B |` X ) ` y ) = ( ( A |` X ) ` y ) ) |
9 |
8
|
adantr |
|- ( ( ( A |` X ) = ( B |` X ) /\ y e. X ) -> ( ( B |` X ) ` y ) = ( ( A |` X ) ` y ) ) |
10 |
|
simpr |
|- ( ( ( A |` X ) = ( B |` X ) /\ y e. X ) -> y e. X ) |
11 |
10
|
fvresd |
|- ( ( ( A |` X ) = ( B |` X ) /\ y e. X ) -> ( ( B |` X ) ` y ) = ( B ` y ) ) |
12 |
10
|
fvresd |
|- ( ( ( A |` X ) = ( B |` X ) /\ y e. X ) -> ( ( A |` X ) ` y ) = ( A ` y ) ) |
13 |
9 11 12
|
3eqtr3d |
|- ( ( ( A |` X ) = ( B |` X ) /\ y e. X ) -> ( B ` y ) = ( A ` y ) ) |
14 |
13
|
ralrimiva |
|- ( ( A |` X ) = ( B |` X ) -> A. y e. X ( B ` y ) = ( A ` y ) ) |
15 |
14
|
adantr |
|- ( ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) -> A. y e. X ( B ` y ) = ( A ` y ) ) |
16 |
15
|
3ad2ant2 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) -> A. y e. X ( B ` y ) = ( A ` y ) ) |
17 |
|
simprr |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) ) -> ( A ` X ) = 2o ) |
18 |
17
|
a1d |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) ) -> ( ( B ` X ) = (/) -> ( A ` X ) = 2o ) ) |
19 |
18
|
ancld |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) ) -> ( ( B ` X ) = (/) -> ( ( B ` X ) = (/) /\ ( A ` X ) = 2o ) ) ) |
20 |
17
|
a1d |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) ) -> ( ( B ` X ) = 1o -> ( A ` X ) = 2o ) ) |
21 |
20
|
ancld |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) ) -> ( ( B ` X ) = 1o -> ( ( B ` X ) = 1o /\ ( A ` X ) = 2o ) ) ) |
22 |
19 21
|
orim12d |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) ) -> ( ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) -> ( ( ( B ` X ) = (/) /\ ( A ` X ) = 2o ) \/ ( ( B ` X ) = 1o /\ ( A ` X ) = 2o ) ) ) ) |
23 |
22
|
3impia |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) -> ( ( ( B ` X ) = (/) /\ ( A ` X ) = 2o ) \/ ( ( B ` X ) = 1o /\ ( A ` X ) = 2o ) ) ) |
24 |
|
3mix3 |
|- ( ( ( B ` X ) = (/) /\ ( A ` X ) = 2o ) -> ( ( ( B ` X ) = 1o /\ ( A ` X ) = (/) ) \/ ( ( B ` X ) = 1o /\ ( A ` X ) = 2o ) \/ ( ( B ` X ) = (/) /\ ( A ` X ) = 2o ) ) ) |
25 |
|
3mix2 |
|- ( ( ( B ` X ) = 1o /\ ( A ` X ) = 2o ) -> ( ( ( B ` X ) = 1o /\ ( A ` X ) = (/) ) \/ ( ( B ` X ) = 1o /\ ( A ` X ) = 2o ) \/ ( ( B ` X ) = (/) /\ ( A ` X ) = 2o ) ) ) |
26 |
24 25
|
jaoi |
|- ( ( ( ( B ` X ) = (/) /\ ( A ` X ) = 2o ) \/ ( ( B ` X ) = 1o /\ ( A ` X ) = 2o ) ) -> ( ( ( B ` X ) = 1o /\ ( A ` X ) = (/) ) \/ ( ( B ` X ) = 1o /\ ( A ` X ) = 2o ) \/ ( ( B ` X ) = (/) /\ ( A ` X ) = 2o ) ) ) |
27 |
23 26
|
syl |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) -> ( ( ( B ` X ) = 1o /\ ( A ` X ) = (/) ) \/ ( ( B ` X ) = 1o /\ ( A ` X ) = 2o ) \/ ( ( B ` X ) = (/) /\ ( A ` X ) = 2o ) ) ) |
28 |
|
fvex |
|- ( B ` X ) e. _V |
29 |
|
fvex |
|- ( A ` X ) e. _V |
30 |
28 29
|
brtp |
|- ( ( B ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` X ) <-> ( ( ( B ` X ) = 1o /\ ( A ` X ) = (/) ) \/ ( ( B ` X ) = 1o /\ ( A ` X ) = 2o ) \/ ( ( B ` X ) = (/) /\ ( A ` X ) = 2o ) ) ) |
31 |
27 30
|
sylibr |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) -> ( B ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` X ) ) |
32 |
|
raleq |
|- ( x = X -> ( A. y e. x ( B ` y ) = ( A ` y ) <-> A. y e. X ( B ` y ) = ( A ` y ) ) ) |
33 |
|
fveq2 |
|- ( x = X -> ( B ` x ) = ( B ` X ) ) |
34 |
|
fveq2 |
|- ( x = X -> ( A ` x ) = ( A ` X ) ) |
35 |
33 34
|
breq12d |
|- ( x = X -> ( ( B ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` x ) <-> ( B ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` X ) ) ) |
36 |
32 35
|
anbi12d |
|- ( x = X -> ( ( A. y e. x ( B ` y ) = ( A ` y ) /\ ( B ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` x ) ) <-> ( A. y e. X ( B ` y ) = ( A ` y ) /\ ( B ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` X ) ) ) ) |
37 |
36
|
rspcev |
|- ( ( X e. On /\ ( A. y e. X ( B ` y ) = ( A ` y ) /\ ( B ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` X ) ) ) -> E. x e. On ( A. y e. x ( B ` y ) = ( A ` y ) /\ ( B ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` x ) ) ) |
38 |
6 16 31 37
|
syl12anc |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) -> E. x e. On ( A. y e. x ( B ` y ) = ( A ` y ) /\ ( B ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` x ) ) ) |
39 |
|
simp12 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) -> B e. No ) |
40 |
|
simp11 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) -> A e. No ) |
41 |
|
sltval |
|- ( ( B e. No /\ A e. No ) -> ( B E. x e. On ( A. y e. x ( B ` y ) = ( A ` y ) /\ ( B ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` x ) ) ) ) |
42 |
39 40 41
|
syl2anc |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) -> ( B E. x e. On ( A. y e. x ( B ` y ) = ( A ` y ) /\ ( B ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` x ) ) ) ) |
43 |
38 42
|
mpbird |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) /\ ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) -> B |
44 |
43
|
3expia |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) ) -> ( ( ( B ` X ) = (/) \/ ( B ` X ) = 1o ) -> B |
45 |
5 44
|
syld |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) ) -> ( -. ( B ` X ) = 2o -> B |
46 |
45
|
con1d |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) ) -> ( -. B ( B ` X ) = 2o ) ) |
47 |
46
|
3impia |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 2o ) /\ -. B ( B ` X ) = 2o ) |