| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noextend.1 |
⊢ 𝑋 ∈ { 1o , 2o } |
| 2 |
|
nodmon |
⊢ ( 𝐴 ∈ No → dom 𝐴 ∈ On ) |
| 3 |
1
|
nosgnn0i |
⊢ ∅ ≠ 𝑋 |
| 4 |
3
|
a1i |
⊢ ( 𝐴 ∈ No → ∅ ≠ 𝑋 ) |
| 5 |
|
nodmord |
⊢ ( 𝐴 ∈ No → Ord dom 𝐴 ) |
| 6 |
|
ordirr |
⊢ ( Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴 ) |
| 7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ No → ¬ dom 𝐴 ∈ dom 𝐴 ) |
| 8 |
|
ndmfv |
⊢ ( ¬ dom 𝐴 ∈ dom 𝐴 → ( 𝐴 ‘ dom 𝐴 ) = ∅ ) |
| 9 |
7 8
|
syl |
⊢ ( 𝐴 ∈ No → ( 𝐴 ‘ dom 𝐴 ) = ∅ ) |
| 10 |
|
nofun |
⊢ ( 𝐴 ∈ No → Fun 𝐴 ) |
| 11 |
|
funfn |
⊢ ( Fun 𝐴 ↔ 𝐴 Fn dom 𝐴 ) |
| 12 |
10 11
|
sylib |
⊢ ( 𝐴 ∈ No → 𝐴 Fn dom 𝐴 ) |
| 13 |
|
fnsng |
⊢ ( ( dom 𝐴 ∈ On ∧ 𝑋 ∈ { 1o , 2o } ) → { 〈 dom 𝐴 , 𝑋 〉 } Fn { dom 𝐴 } ) |
| 14 |
2 1 13
|
sylancl |
⊢ ( 𝐴 ∈ No → { 〈 dom 𝐴 , 𝑋 〉 } Fn { dom 𝐴 } ) |
| 15 |
|
disjsn |
⊢ ( ( dom 𝐴 ∩ { dom 𝐴 } ) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴 ) |
| 16 |
7 15
|
sylibr |
⊢ ( 𝐴 ∈ No → ( dom 𝐴 ∩ { dom 𝐴 } ) = ∅ ) |
| 17 |
|
snidg |
⊢ ( dom 𝐴 ∈ On → dom 𝐴 ∈ { dom 𝐴 } ) |
| 18 |
2 17
|
syl |
⊢ ( 𝐴 ∈ No → dom 𝐴 ∈ { dom 𝐴 } ) |
| 19 |
|
fvun2 |
⊢ ( ( 𝐴 Fn dom 𝐴 ∧ { 〈 dom 𝐴 , 𝑋 〉 } Fn { dom 𝐴 } ∧ ( ( dom 𝐴 ∩ { dom 𝐴 } ) = ∅ ∧ dom 𝐴 ∈ { dom 𝐴 } ) ) → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) = ( { 〈 dom 𝐴 , 𝑋 〉 } ‘ dom 𝐴 ) ) |
| 20 |
12 14 16 18 19
|
syl112anc |
⊢ ( 𝐴 ∈ No → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) = ( { 〈 dom 𝐴 , 𝑋 〉 } ‘ dom 𝐴 ) ) |
| 21 |
|
fvsng |
⊢ ( ( dom 𝐴 ∈ On ∧ 𝑋 ∈ { 1o , 2o } ) → ( { 〈 dom 𝐴 , 𝑋 〉 } ‘ dom 𝐴 ) = 𝑋 ) |
| 22 |
2 1 21
|
sylancl |
⊢ ( 𝐴 ∈ No → ( { 〈 dom 𝐴 , 𝑋 〉 } ‘ dom 𝐴 ) = 𝑋 ) |
| 23 |
20 22
|
eqtrd |
⊢ ( 𝐴 ∈ No → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) = 𝑋 ) |
| 24 |
4 9 23
|
3netr4d |
⊢ ( 𝐴 ∈ No → ( 𝐴 ‘ dom 𝐴 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑥 = dom 𝐴 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ dom 𝐴 ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑥 = dom 𝐴 → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) = ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) ) |
| 27 |
25 26
|
neeq12d |
⊢ ( 𝑥 = dom 𝐴 → ( ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) ↔ ( 𝐴 ‘ dom 𝐴 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) ) ) |
| 28 |
27
|
onintss |
⊢ ( dom 𝐴 ∈ On → ( ( 𝐴 ‘ dom 𝐴 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } ⊆ dom 𝐴 ) ) |
| 29 |
2 24 28
|
sylc |
⊢ ( 𝐴 ∈ No → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } ⊆ dom 𝐴 ) |
| 30 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
| 31 |
|
ordtri2 |
⊢ ( ( Ord 𝑦 ∧ Ord dom 𝐴 ) → ( 𝑦 ∈ dom 𝐴 ↔ ¬ ( 𝑦 = dom 𝐴 ∨ dom 𝐴 ∈ 𝑦 ) ) ) |
| 32 |
|
eqcom |
⊢ ( 𝑦 = dom 𝐴 ↔ dom 𝐴 = 𝑦 ) |
| 33 |
32
|
orbi1i |
⊢ ( ( 𝑦 = dom 𝐴 ∨ dom 𝐴 ∈ 𝑦 ) ↔ ( dom 𝐴 = 𝑦 ∨ dom 𝐴 ∈ 𝑦 ) ) |
| 34 |
|
orcom |
⊢ ( ( dom 𝐴 = 𝑦 ∨ dom 𝐴 ∈ 𝑦 ) ↔ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) |
| 35 |
33 34
|
bitri |
⊢ ( ( 𝑦 = dom 𝐴 ∨ dom 𝐴 ∈ 𝑦 ) ↔ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) |
| 36 |
35
|
notbii |
⊢ ( ¬ ( 𝑦 = dom 𝐴 ∨ dom 𝐴 ∈ 𝑦 ) ↔ ¬ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) |
| 37 |
31 36
|
bitrdi |
⊢ ( ( Ord 𝑦 ∧ Ord dom 𝐴 ) → ( 𝑦 ∈ dom 𝐴 ↔ ¬ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) ) |
| 38 |
|
ordsseleq |
⊢ ( ( Ord dom 𝐴 ∧ Ord 𝑦 ) → ( dom 𝐴 ⊆ 𝑦 ↔ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) ) |
| 39 |
38
|
notbid |
⊢ ( ( Ord dom 𝐴 ∧ Ord 𝑦 ) → ( ¬ dom 𝐴 ⊆ 𝑦 ↔ ¬ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) ) |
| 40 |
39
|
ancoms |
⊢ ( ( Ord 𝑦 ∧ Ord dom 𝐴 ) → ( ¬ dom 𝐴 ⊆ 𝑦 ↔ ¬ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) ) |
| 41 |
37 40
|
bitr4d |
⊢ ( ( Ord 𝑦 ∧ Ord dom 𝐴 ) → ( 𝑦 ∈ dom 𝐴 ↔ ¬ dom 𝐴 ⊆ 𝑦 ) ) |
| 42 |
30 5 41
|
syl2anr |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ) → ( 𝑦 ∈ dom 𝐴 ↔ ¬ dom 𝐴 ⊆ 𝑦 ) ) |
| 43 |
12
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴 ) → 𝐴 Fn dom 𝐴 ) |
| 44 |
14
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴 ) → { 〈 dom 𝐴 , 𝑋 〉 } Fn { dom 𝐴 } ) |
| 45 |
16
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴 ) → ( dom 𝐴 ∩ { dom 𝐴 } ) = ∅ ) |
| 46 |
|
simp3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴 ) → 𝑦 ∈ dom 𝐴 ) |
| 47 |
|
fvun1 |
⊢ ( ( 𝐴 Fn dom 𝐴 ∧ { 〈 dom 𝐴 , 𝑋 〉 } Fn { dom 𝐴 } ∧ ( ( dom 𝐴 ∩ { dom 𝐴 } ) = ∅ ∧ 𝑦 ∈ dom 𝐴 ) ) → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) = ( 𝐴 ‘ 𝑦 ) ) |
| 48 |
43 44 45 46 47
|
syl112anc |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴 ) → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) = ( 𝐴 ‘ 𝑦 ) ) |
| 49 |
48
|
eqcomd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴 ) → ( 𝐴 ‘ 𝑦 ) = ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) ) |
| 50 |
49
|
3expia |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ) → ( 𝑦 ∈ dom 𝐴 → ( 𝐴 ‘ 𝑦 ) = ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) ) ) |
| 51 |
42 50
|
sylbird |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ) → ( ¬ dom 𝐴 ⊆ 𝑦 → ( 𝐴 ‘ 𝑦 ) = ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) ) ) |
| 52 |
51
|
necon1ad |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ) → ( ( 𝐴 ‘ 𝑦 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) → dom 𝐴 ⊆ 𝑦 ) ) |
| 53 |
52
|
ralrimiva |
⊢ ( 𝐴 ∈ No → ∀ 𝑦 ∈ On ( ( 𝐴 ‘ 𝑦 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) → dom 𝐴 ⊆ 𝑦 ) ) |
| 54 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑦 ) ) |
| 55 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) = ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) ) |
| 56 |
54 55
|
neeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) ↔ ( 𝐴 ‘ 𝑦 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) ) ) |
| 57 |
56
|
ralrab |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } dom 𝐴 ⊆ 𝑦 ↔ ∀ 𝑦 ∈ On ( ( 𝐴 ‘ 𝑦 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) → dom 𝐴 ⊆ 𝑦 ) ) |
| 58 |
53 57
|
sylibr |
⊢ ( 𝐴 ∈ No → ∀ 𝑦 ∈ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } dom 𝐴 ⊆ 𝑦 ) |
| 59 |
|
ssint |
⊢ ( dom 𝐴 ⊆ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } ↔ ∀ 𝑦 ∈ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } dom 𝐴 ⊆ 𝑦 ) |
| 60 |
58 59
|
sylibr |
⊢ ( 𝐴 ∈ No → dom 𝐴 ⊆ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } ) |
| 61 |
29 60
|
eqssd |
⊢ ( 𝐴 ∈ No → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } = dom 𝐴 ) |