Step |
Hyp |
Ref |
Expression |
1 |
|
noextend.1 |
⊢ 𝑋 ∈ { 1o , 2o } |
2 |
|
nodmon |
⊢ ( 𝐴 ∈ No → dom 𝐴 ∈ On ) |
3 |
1
|
nosgnn0i |
⊢ ∅ ≠ 𝑋 |
4 |
3
|
a1i |
⊢ ( 𝐴 ∈ No → ∅ ≠ 𝑋 ) |
5 |
|
nodmord |
⊢ ( 𝐴 ∈ No → Ord dom 𝐴 ) |
6 |
|
ordirr |
⊢ ( Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ No → ¬ dom 𝐴 ∈ dom 𝐴 ) |
8 |
|
ndmfv |
⊢ ( ¬ dom 𝐴 ∈ dom 𝐴 → ( 𝐴 ‘ dom 𝐴 ) = ∅ ) |
9 |
7 8
|
syl |
⊢ ( 𝐴 ∈ No → ( 𝐴 ‘ dom 𝐴 ) = ∅ ) |
10 |
|
nofun |
⊢ ( 𝐴 ∈ No → Fun 𝐴 ) |
11 |
|
funfn |
⊢ ( Fun 𝐴 ↔ 𝐴 Fn dom 𝐴 ) |
12 |
10 11
|
sylib |
⊢ ( 𝐴 ∈ No → 𝐴 Fn dom 𝐴 ) |
13 |
|
fnsng |
⊢ ( ( dom 𝐴 ∈ On ∧ 𝑋 ∈ { 1o , 2o } ) → { 〈 dom 𝐴 , 𝑋 〉 } Fn { dom 𝐴 } ) |
14 |
2 1 13
|
sylancl |
⊢ ( 𝐴 ∈ No → { 〈 dom 𝐴 , 𝑋 〉 } Fn { dom 𝐴 } ) |
15 |
|
disjsn |
⊢ ( ( dom 𝐴 ∩ { dom 𝐴 } ) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴 ) |
16 |
7 15
|
sylibr |
⊢ ( 𝐴 ∈ No → ( dom 𝐴 ∩ { dom 𝐴 } ) = ∅ ) |
17 |
|
snidg |
⊢ ( dom 𝐴 ∈ On → dom 𝐴 ∈ { dom 𝐴 } ) |
18 |
2 17
|
syl |
⊢ ( 𝐴 ∈ No → dom 𝐴 ∈ { dom 𝐴 } ) |
19 |
|
fvun2 |
⊢ ( ( 𝐴 Fn dom 𝐴 ∧ { 〈 dom 𝐴 , 𝑋 〉 } Fn { dom 𝐴 } ∧ ( ( dom 𝐴 ∩ { dom 𝐴 } ) = ∅ ∧ dom 𝐴 ∈ { dom 𝐴 } ) ) → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) = ( { 〈 dom 𝐴 , 𝑋 〉 } ‘ dom 𝐴 ) ) |
20 |
12 14 16 18 19
|
syl112anc |
⊢ ( 𝐴 ∈ No → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) = ( { 〈 dom 𝐴 , 𝑋 〉 } ‘ dom 𝐴 ) ) |
21 |
|
fvsng |
⊢ ( ( dom 𝐴 ∈ On ∧ 𝑋 ∈ { 1o , 2o } ) → ( { 〈 dom 𝐴 , 𝑋 〉 } ‘ dom 𝐴 ) = 𝑋 ) |
22 |
2 1 21
|
sylancl |
⊢ ( 𝐴 ∈ No → ( { 〈 dom 𝐴 , 𝑋 〉 } ‘ dom 𝐴 ) = 𝑋 ) |
23 |
20 22
|
eqtrd |
⊢ ( 𝐴 ∈ No → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) = 𝑋 ) |
24 |
4 9 23
|
3netr4d |
⊢ ( 𝐴 ∈ No → ( 𝐴 ‘ dom 𝐴 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = dom 𝐴 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ dom 𝐴 ) ) |
26 |
|
fveq2 |
⊢ ( 𝑥 = dom 𝐴 → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) = ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) ) |
27 |
25 26
|
neeq12d |
⊢ ( 𝑥 = dom 𝐴 → ( ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) ↔ ( 𝐴 ‘ dom 𝐴 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) ) ) |
28 |
27
|
onintss |
⊢ ( dom 𝐴 ∈ On → ( ( 𝐴 ‘ dom 𝐴 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ dom 𝐴 ) → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } ⊆ dom 𝐴 ) ) |
29 |
2 24 28
|
sylc |
⊢ ( 𝐴 ∈ No → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } ⊆ dom 𝐴 ) |
30 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
31 |
|
ordtri2 |
⊢ ( ( Ord 𝑦 ∧ Ord dom 𝐴 ) → ( 𝑦 ∈ dom 𝐴 ↔ ¬ ( 𝑦 = dom 𝐴 ∨ dom 𝐴 ∈ 𝑦 ) ) ) |
32 |
|
eqcom |
⊢ ( 𝑦 = dom 𝐴 ↔ dom 𝐴 = 𝑦 ) |
33 |
32
|
orbi1i |
⊢ ( ( 𝑦 = dom 𝐴 ∨ dom 𝐴 ∈ 𝑦 ) ↔ ( dom 𝐴 = 𝑦 ∨ dom 𝐴 ∈ 𝑦 ) ) |
34 |
|
orcom |
⊢ ( ( dom 𝐴 = 𝑦 ∨ dom 𝐴 ∈ 𝑦 ) ↔ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) |
35 |
33 34
|
bitri |
⊢ ( ( 𝑦 = dom 𝐴 ∨ dom 𝐴 ∈ 𝑦 ) ↔ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) |
36 |
35
|
notbii |
⊢ ( ¬ ( 𝑦 = dom 𝐴 ∨ dom 𝐴 ∈ 𝑦 ) ↔ ¬ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) |
37 |
31 36
|
bitrdi |
⊢ ( ( Ord 𝑦 ∧ Ord dom 𝐴 ) → ( 𝑦 ∈ dom 𝐴 ↔ ¬ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) ) |
38 |
|
ordsseleq |
⊢ ( ( Ord dom 𝐴 ∧ Ord 𝑦 ) → ( dom 𝐴 ⊆ 𝑦 ↔ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) ) |
39 |
38
|
notbid |
⊢ ( ( Ord dom 𝐴 ∧ Ord 𝑦 ) → ( ¬ dom 𝐴 ⊆ 𝑦 ↔ ¬ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) ) |
40 |
39
|
ancoms |
⊢ ( ( Ord 𝑦 ∧ Ord dom 𝐴 ) → ( ¬ dom 𝐴 ⊆ 𝑦 ↔ ¬ ( dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦 ) ) ) |
41 |
37 40
|
bitr4d |
⊢ ( ( Ord 𝑦 ∧ Ord dom 𝐴 ) → ( 𝑦 ∈ dom 𝐴 ↔ ¬ dom 𝐴 ⊆ 𝑦 ) ) |
42 |
30 5 41
|
syl2anr |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ) → ( 𝑦 ∈ dom 𝐴 ↔ ¬ dom 𝐴 ⊆ 𝑦 ) ) |
43 |
12
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴 ) → 𝐴 Fn dom 𝐴 ) |
44 |
14
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴 ) → { 〈 dom 𝐴 , 𝑋 〉 } Fn { dom 𝐴 } ) |
45 |
16
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴 ) → ( dom 𝐴 ∩ { dom 𝐴 } ) = ∅ ) |
46 |
|
simp3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴 ) → 𝑦 ∈ dom 𝐴 ) |
47 |
|
fvun1 |
⊢ ( ( 𝐴 Fn dom 𝐴 ∧ { 〈 dom 𝐴 , 𝑋 〉 } Fn { dom 𝐴 } ∧ ( ( dom 𝐴 ∩ { dom 𝐴 } ) = ∅ ∧ 𝑦 ∈ dom 𝐴 ) ) → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) = ( 𝐴 ‘ 𝑦 ) ) |
48 |
43 44 45 46 47
|
syl112anc |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴 ) → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) = ( 𝐴 ‘ 𝑦 ) ) |
49 |
48
|
eqcomd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴 ) → ( 𝐴 ‘ 𝑦 ) = ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) ) |
50 |
49
|
3expia |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ) → ( 𝑦 ∈ dom 𝐴 → ( 𝐴 ‘ 𝑦 ) = ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) ) ) |
51 |
42 50
|
sylbird |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ) → ( ¬ dom 𝐴 ⊆ 𝑦 → ( 𝐴 ‘ 𝑦 ) = ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) ) ) |
52 |
51
|
necon1ad |
⊢ ( ( 𝐴 ∈ No ∧ 𝑦 ∈ On ) → ( ( 𝐴 ‘ 𝑦 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) → dom 𝐴 ⊆ 𝑦 ) ) |
53 |
52
|
ralrimiva |
⊢ ( 𝐴 ∈ No → ∀ 𝑦 ∈ On ( ( 𝐴 ‘ 𝑦 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) → dom 𝐴 ⊆ 𝑦 ) ) |
54 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑦 ) ) |
55 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) = ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) ) |
56 |
54 55
|
neeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) ↔ ( 𝐴 ‘ 𝑦 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) ) ) |
57 |
56
|
ralrab |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } dom 𝐴 ⊆ 𝑦 ↔ ∀ 𝑦 ∈ On ( ( 𝐴 ‘ 𝑦 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑦 ) → dom 𝐴 ⊆ 𝑦 ) ) |
58 |
53 57
|
sylibr |
⊢ ( 𝐴 ∈ No → ∀ 𝑦 ∈ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } dom 𝐴 ⊆ 𝑦 ) |
59 |
|
ssint |
⊢ ( dom 𝐴 ⊆ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } ↔ ∀ 𝑦 ∈ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } dom 𝐴 ⊆ 𝑦 ) |
60 |
58 59
|
sylibr |
⊢ ( 𝐴 ∈ No → dom 𝐴 ⊆ ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } ) |
61 |
29 60
|
eqssd |
⊢ ( 𝐴 ∈ No → ∩ { 𝑥 ∈ On ∣ ( 𝐴 ‘ 𝑥 ) ≠ ( ( 𝐴 ∪ { 〈 dom 𝐴 , 𝑋 〉 } ) ‘ 𝑥 ) } = dom 𝐴 ) |