| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordsseleq |  |-  ( ( Ord B /\ Ord A ) -> ( B C_ A <-> ( B e. A \/ B = A ) ) ) | 
						
							| 2 |  | eqcom |  |-  ( B = A <-> A = B ) | 
						
							| 3 | 2 | orbi2i |  |-  ( ( B e. A \/ B = A ) <-> ( B e. A \/ A = B ) ) | 
						
							| 4 |  | orcom |  |-  ( ( B e. A \/ A = B ) <-> ( A = B \/ B e. A ) ) | 
						
							| 5 | 3 4 | bitri |  |-  ( ( B e. A \/ B = A ) <-> ( A = B \/ B e. A ) ) | 
						
							| 6 | 1 5 | bitrdi |  |-  ( ( Ord B /\ Ord A ) -> ( B C_ A <-> ( A = B \/ B e. A ) ) ) | 
						
							| 7 |  | ordtri1 |  |-  ( ( Ord B /\ Ord A ) -> ( B C_ A <-> -. A e. B ) ) | 
						
							| 8 | 6 7 | bitr3d |  |-  ( ( Ord B /\ Ord A ) -> ( ( A = B \/ B e. A ) <-> -. A e. B ) ) | 
						
							| 9 | 8 | ancoms |  |-  ( ( Ord A /\ Ord B ) -> ( ( A = B \/ B e. A ) <-> -. A e. B ) ) | 
						
							| 10 | 9 | con2bid |  |-  ( ( Ord A /\ Ord B ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |