Metamath Proof Explorer


Theorem bdayimaon

Description: Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011)

Ref Expression
Assertion bdayimaon ( 𝐴𝑉 → suc ( bday 𝐴 ) ∈ On )

Proof

Step Hyp Ref Expression
1 bdayfo bday : No onto→ On
2 fofun ( bday : No onto→ On → Fun bday )
3 1 2 ax-mp Fun bday
4 funimaexg ( ( Fun bday 𝐴𝑉 ) → ( bday 𝐴 ) ∈ V )
5 3 4 mpan ( 𝐴𝑉 → ( bday 𝐴 ) ∈ V )
6 5 uniexd ( 𝐴𝑉 ( bday 𝐴 ) ∈ V )
7 imassrn ( bday 𝐴 ) ⊆ ran bday
8 forn ( bday : No onto→ On → ran bday = On )
9 1 8 ax-mp ran bday = On
10 7 9 sseqtri ( bday 𝐴 ) ⊆ On
11 ssorduni ( ( bday 𝐴 ) ⊆ On → Ord ( bday 𝐴 ) )
12 10 11 ax-mp Ord ( bday 𝐴 )
13 6 12 jctil ( 𝐴𝑉 → ( Ord ( bday 𝐴 ) ∧ ( bday 𝐴 ) ∈ V ) )
14 elon2 ( ( bday 𝐴 ) ∈ On ↔ ( Ord ( bday 𝐴 ) ∧ ( bday 𝐴 ) ∈ V ) )
15 sucelon ( ( bday 𝐴 ) ∈ On ↔ suc ( bday 𝐴 ) ∈ On )
16 14 15 bitr3i ( ( Ord ( bday 𝐴 ) ∧ ( bday 𝐴 ) ∈ V ) ↔ suc ( bday 𝐴 ) ∈ On )
17 13 16 sylib ( 𝐴𝑉 → suc ( bday 𝐴 ) ∈ On )