Step |
Hyp |
Ref |
Expression |
1 |
|
bdayfo |
|- bday : No -onto-> On |
2 |
|
fofun |
|- ( bday : No -onto-> On -> Fun bday ) |
3 |
1 2
|
ax-mp |
|- Fun bday |
4 |
|
funimaexg |
|- ( ( Fun bday /\ A e. V ) -> ( bday " A ) e. _V ) |
5 |
3 4
|
mpan |
|- ( A e. V -> ( bday " A ) e. _V ) |
6 |
5
|
uniexd |
|- ( A e. V -> U. ( bday " A ) e. _V ) |
7 |
|
imassrn |
|- ( bday " A ) C_ ran bday |
8 |
|
forn |
|- ( bday : No -onto-> On -> ran bday = On ) |
9 |
1 8
|
ax-mp |
|- ran bday = On |
10 |
7 9
|
sseqtri |
|- ( bday " A ) C_ On |
11 |
|
ssorduni |
|- ( ( bday " A ) C_ On -> Ord U. ( bday " A ) ) |
12 |
10 11
|
ax-mp |
|- Ord U. ( bday " A ) |
13 |
6 12
|
jctil |
|- ( A e. V -> ( Ord U. ( bday " A ) /\ U. ( bday " A ) e. _V ) ) |
14 |
|
elon2 |
|- ( U. ( bday " A ) e. On <-> ( Ord U. ( bday " A ) /\ U. ( bday " A ) e. _V ) ) |
15 |
|
sucelon |
|- ( U. ( bday " A ) e. On <-> suc U. ( bday " A ) e. On ) |
16 |
14 15
|
bitr3i |
|- ( ( Ord U. ( bday " A ) /\ U. ( bday " A ) e. _V ) <-> suc U. ( bday " A ) e. On ) |
17 |
13 16
|
sylib |
|- ( A e. V -> suc U. ( bday " A ) e. On ) |