Metamath Proof Explorer


Theorem bdayimaon

Description: Lemma for full-eta properties. The successor of the union of the image of the birthday function under a set is an ordinal. (Contributed by Scott Fenton, 20-Aug-2011)

Ref Expression
Assertion bdayimaon AVsucbdayAOn

Proof

Step Hyp Ref Expression
1 bdayfo bday:NoontoOn
2 fofun bday:NoontoOnFunbday
3 1 2 ax-mp Funbday
4 funimaexg FunbdayAVbdayAV
5 3 4 mpan AVbdayAV
6 5 uniexd AVbdayAV
7 imassrn bdayAranbday
8 forn bday:NoontoOnranbday=On
9 1 8 ax-mp ranbday=On
10 7 9 sseqtri bdayAOn
11 ssorduni bdayAOnOrdbdayA
12 10 11 ax-mp OrdbdayA
13 6 12 jctil AVOrdbdayAbdayAV
14 elon2 bdayAOnOrdbdayAbdayAV
15 onsucb bdayAOnsucbdayAOn
16 14 15 bitr3i OrdbdayAbdayAVsucbdayAOn
17 13 16 sylib AVsucbdayAOn