Description: An ordinal number is an ordinal set. Part of Definition 1.2 of Schloeder p. 1. (Contributed by NM, 8-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elon2 | |- ( A e. On <-> ( Ord A /\ A e. _V ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex | |- ( A e. On -> A e. _V ) | |
| 2 | elong | |- ( A e. _V -> ( A e. On <-> Ord A ) ) | |
| 3 | 1 2 | biadanii | |- ( A e. On <-> ( A e. _V /\ Ord A ) ) | 
| 4 | 3 | biancomi | |- ( A e. On <-> ( Ord A /\ A e. _V ) ) |