Step |
Hyp |
Ref |
Expression |
1 |
|
noetasuplem.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
noetasuplem.2 |
⊢ 𝑍 = ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
3 |
2
|
reseq1i |
⊢ ( 𝑍 ↾ dom 𝑆 ) = ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ↾ dom 𝑆 ) |
4 |
|
resundir |
⊢ ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ↾ dom 𝑆 ) = ( ( 𝑆 ↾ dom 𝑆 ) ∪ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) ) |
5 |
|
dmres |
⊢ dom ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) = ( dom 𝑆 ∩ dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
6 |
|
1oex |
⊢ 1o ∈ V |
7 |
6
|
snnz |
⊢ { 1o } ≠ ∅ |
8 |
|
dmxp |
⊢ ( { 1o } ≠ ∅ → dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) = ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) |
9 |
7 8
|
ax-mp |
⊢ dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) = ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) |
10 |
9
|
ineq2i |
⊢ ( dom 𝑆 ∩ dom ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) = ( dom 𝑆 ∩ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) |
11 |
|
disjdif |
⊢ ( dom 𝑆 ∩ ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ) = ∅ |
12 |
5 10 11
|
3eqtri |
⊢ dom ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) = ∅ |
13 |
|
relres |
⊢ Rel ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) |
14 |
|
reldm0 |
⊢ ( Rel ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) → ( ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) = ∅ ↔ dom ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) = ∅ ) ) |
15 |
13 14
|
ax-mp |
⊢ ( ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) = ∅ ↔ dom ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) = ∅ ) |
16 |
12 15
|
mpbir |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) = ∅ |
17 |
16
|
uneq2i |
⊢ ( ( 𝑆 ↾ dom 𝑆 ) ∪ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) ) = ( ( 𝑆 ↾ dom 𝑆 ) ∪ ∅ ) |
18 |
3 4 17
|
3eqtri |
⊢ ( 𝑍 ↾ dom 𝑆 ) = ( ( 𝑆 ↾ dom 𝑆 ) ∪ ∅ ) |
19 |
1
|
nosupno |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → 𝑆 ∈ No ) |
20 |
19
|
3adant3 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝑆 ∈ No ) |
21 |
|
nofun |
⊢ ( 𝑆 ∈ No → Fun 𝑆 ) |
22 |
20 21
|
syl |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → Fun 𝑆 ) |
23 |
|
funrel |
⊢ ( Fun 𝑆 → Rel 𝑆 ) |
24 |
|
resdm |
⊢ ( Rel 𝑆 → ( 𝑆 ↾ dom 𝑆 ) = 𝑆 ) |
25 |
22 23 24
|
3syl |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑆 ↾ dom 𝑆 ) = 𝑆 ) |
26 |
25
|
uneq1d |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 𝑆 ↾ dom 𝑆 ) ∪ ∅ ) = ( 𝑆 ∪ ∅ ) ) |
27 |
|
un0 |
⊢ ( 𝑆 ∪ ∅ ) = 𝑆 |
28 |
26 27
|
eqtrdi |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 𝑆 ↾ dom 𝑆 ) ∪ ∅ ) = 𝑆 ) |
29 |
18 28
|
syl5eq |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑍 ↾ dom 𝑆 ) = 𝑆 ) |