Step |
Hyp |
Ref |
Expression |
1 |
|
noetasuplem.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
noetasuplem.2 |
⊢ 𝑍 = ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) |
3 |
|
simpl1 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → 𝐴 ⊆ No ) |
4 |
|
simpl2 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → 𝐴 ∈ V ) |
5 |
|
simpr |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) |
6 |
1
|
nosupbnd1 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 ↾ dom 𝑆 ) <s 𝑆 ) |
7 |
3 4 5 6
|
syl3anc |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 ↾ dom 𝑆 ) <s 𝑆 ) |
8 |
2
|
reseq1i |
⊢ ( 𝑍 ↾ dom 𝑆 ) = ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ↾ dom 𝑆 ) |
9 |
|
resundir |
⊢ ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ↾ dom 𝑆 ) = ( ( 𝑆 ↾ dom 𝑆 ) ∪ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) ) |
10 |
|
df-res |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) = ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ∩ ( dom 𝑆 × V ) ) |
11 |
|
disjdifr |
⊢ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ∩ dom 𝑆 ) = ∅ |
12 |
|
xpdisj1 |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) ∩ dom 𝑆 ) = ∅ → ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ∩ ( dom 𝑆 × V ) ) = ∅ ) |
13 |
11 12
|
ax-mp |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ∩ ( dom 𝑆 × V ) ) = ∅ |
14 |
10 13
|
eqtri |
⊢ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) = ∅ |
15 |
14
|
uneq2i |
⊢ ( ( 𝑆 ↾ dom 𝑆 ) ∪ ( ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ↾ dom 𝑆 ) ) = ( ( 𝑆 ↾ dom 𝑆 ) ∪ ∅ ) |
16 |
|
un0 |
⊢ ( ( 𝑆 ↾ dom 𝑆 ) ∪ ∅ ) = ( 𝑆 ↾ dom 𝑆 ) |
17 |
9 15 16
|
3eqtri |
⊢ ( ( 𝑆 ∪ ( ( suc ∪ ( bday “ 𝐵 ) ∖ dom 𝑆 ) × { 1o } ) ) ↾ dom 𝑆 ) = ( 𝑆 ↾ dom 𝑆 ) |
18 |
8 17
|
eqtri |
⊢ ( 𝑍 ↾ dom 𝑆 ) = ( 𝑆 ↾ dom 𝑆 ) |
19 |
1
|
nosupno |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → 𝑆 ∈ No ) |
20 |
3 4 19
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → 𝑆 ∈ No ) |
21 |
|
nofun |
⊢ ( 𝑆 ∈ No → Fun 𝑆 ) |
22 |
20 21
|
syl |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → Fun 𝑆 ) |
23 |
|
funrel |
⊢ ( Fun 𝑆 → Rel 𝑆 ) |
24 |
|
resdm |
⊢ ( Rel 𝑆 → ( 𝑆 ↾ dom 𝑆 ) = 𝑆 ) |
25 |
22 23 24
|
3syl |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝑆 ↾ dom 𝑆 ) = 𝑆 ) |
26 |
18 25
|
syl5eq |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝑍 ↾ dom 𝑆 ) = 𝑆 ) |
27 |
7 26
|
breqtrrd |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 ↾ dom 𝑆 ) <s ( 𝑍 ↾ dom 𝑆 ) ) |
28 |
|
simp1 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝐴 ⊆ No ) |
29 |
28
|
sselda |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ No ) |
30 |
1 2
|
noetasuplem1 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 𝑍 ∈ No ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → 𝑍 ∈ No ) |
32 |
|
nodmon |
⊢ ( 𝑆 ∈ No → dom 𝑆 ∈ On ) |
33 |
20 32
|
syl |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → dom 𝑆 ∈ On ) |
34 |
|
sltres |
⊢ ( ( 𝑋 ∈ No ∧ 𝑍 ∈ No ∧ dom 𝑆 ∈ On ) → ( ( 𝑋 ↾ dom 𝑆 ) <s ( 𝑍 ↾ dom 𝑆 ) → 𝑋 <s 𝑍 ) ) |
35 |
29 31 33 34
|
syl3anc |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝑋 ↾ dom 𝑆 ) <s ( 𝑍 ↾ dom 𝑆 ) → 𝑋 <s 𝑍 ) ) |
36 |
27 35
|
mpd |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝑋 ∈ 𝐴 ) → 𝑋 <s 𝑍 ) |