Step |
Hyp |
Ref |
Expression |
1 |
|
noetasuplem.1 |
|- S = if ( E. x e. A A. y e. A -. x . } ) , ( g e. { y | E. u e. A ( y e. dom u /\ A. v e. A ( -. v ( u |` suc y ) = ( v |` suc y ) ) ) } |-> ( iota x E. u e. A ( g e. dom u /\ A. v e. A ( -. v ( u |` suc g ) = ( v |` suc g ) ) /\ ( u ` g ) = x ) ) ) ) |
2 |
|
noetasuplem.2 |
|- Z = ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |
3 |
|
simpl1 |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> A C_ No ) |
4 |
|
simpl2 |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> A e. _V ) |
5 |
|
simpr |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> X e. A ) |
6 |
1
|
nosupbnd1 |
|- ( ( A C_ No /\ A e. _V /\ X e. A ) -> ( X |` dom S ) |
7 |
3 4 5 6
|
syl3anc |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> ( X |` dom S ) |
8 |
2
|
reseq1i |
|- ( Z |` dom S ) = ( ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |` dom S ) |
9 |
|
resundir |
|- ( ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |` dom S ) = ( ( S |` dom S ) u. ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) ) |
10 |
|
df-res |
|- ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) = ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) i^i ( dom S X. _V ) ) |
11 |
|
disjdifr |
|- ( ( suc U. ( bday " B ) \ dom S ) i^i dom S ) = (/) |
12 |
|
xpdisj1 |
|- ( ( ( suc U. ( bday " B ) \ dom S ) i^i dom S ) = (/) -> ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) i^i ( dom S X. _V ) ) = (/) ) |
13 |
11 12
|
ax-mp |
|- ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) i^i ( dom S X. _V ) ) = (/) |
14 |
10 13
|
eqtri |
|- ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) = (/) |
15 |
14
|
uneq2i |
|- ( ( S |` dom S ) u. ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) ) = ( ( S |` dom S ) u. (/) ) |
16 |
|
un0 |
|- ( ( S |` dom S ) u. (/) ) = ( S |` dom S ) |
17 |
9 15 16
|
3eqtri |
|- ( ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |` dom S ) = ( S |` dom S ) |
18 |
8 17
|
eqtri |
|- ( Z |` dom S ) = ( S |` dom S ) |
19 |
1
|
nosupno |
|- ( ( A C_ No /\ A e. _V ) -> S e. No ) |
20 |
3 4 19
|
syl2anc |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> S e. No ) |
21 |
|
nofun |
|- ( S e. No -> Fun S ) |
22 |
20 21
|
syl |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> Fun S ) |
23 |
|
funrel |
|- ( Fun S -> Rel S ) |
24 |
|
resdm |
|- ( Rel S -> ( S |` dom S ) = S ) |
25 |
22 23 24
|
3syl |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> ( S |` dom S ) = S ) |
26 |
18 25
|
syl5eq |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> ( Z |` dom S ) = S ) |
27 |
7 26
|
breqtrrd |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> ( X |` dom S ) |
28 |
|
simp1 |
|- ( ( A C_ No /\ A e. _V /\ B e. _V ) -> A C_ No ) |
29 |
28
|
sselda |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> X e. No ) |
30 |
1 2
|
noetasuplem1 |
|- ( ( A C_ No /\ A e. _V /\ B e. _V ) -> Z e. No ) |
31 |
30
|
adantr |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> Z e. No ) |
32 |
|
nodmon |
|- ( S e. No -> dom S e. On ) |
33 |
20 32
|
syl |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> dom S e. On ) |
34 |
|
sltres |
|- ( ( X e. No /\ Z e. No /\ dom S e. On ) -> ( ( X |` dom S ) X |
35 |
29 31 33 34
|
syl3anc |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> ( ( X |` dom S ) X |
36 |
27 35
|
mpd |
|- ( ( ( A C_ No /\ A e. _V /\ B e. _V ) /\ X e. A ) -> X |