Step |
Hyp |
Ref |
Expression |
1 |
|
noetasuplem.1 |
|- S = if ( E. x e. A A. y e. A -. x . } ) , ( g e. { y | E. u e. A ( y e. dom u /\ A. v e. A ( -. v ( u |` suc y ) = ( v |` suc y ) ) ) } |-> ( iota x E. u e. A ( g e. dom u /\ A. v e. A ( -. v ( u |` suc g ) = ( v |` suc g ) ) /\ ( u ` g ) = x ) ) ) ) |
2 |
|
noetasuplem.2 |
|- Z = ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |
3 |
2
|
reseq1i |
|- ( Z |` dom S ) = ( ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |` dom S ) |
4 |
|
resundir |
|- ( ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |` dom S ) = ( ( S |` dom S ) u. ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) ) |
5 |
|
dmres |
|- dom ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) = ( dom S i^i dom ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |
6 |
|
1oex |
|- 1o e. _V |
7 |
6
|
snnz |
|- { 1o } =/= (/) |
8 |
|
dmxp |
|- ( { 1o } =/= (/) -> dom ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) = ( suc U. ( bday " B ) \ dom S ) ) |
9 |
7 8
|
ax-mp |
|- dom ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) = ( suc U. ( bday " B ) \ dom S ) |
10 |
9
|
ineq2i |
|- ( dom S i^i dom ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) = ( dom S i^i ( suc U. ( bday " B ) \ dom S ) ) |
11 |
|
disjdif |
|- ( dom S i^i ( suc U. ( bday " B ) \ dom S ) ) = (/) |
12 |
5 10 11
|
3eqtri |
|- dom ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) = (/) |
13 |
|
relres |
|- Rel ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) |
14 |
|
reldm0 |
|- ( Rel ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) -> ( ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) = (/) <-> dom ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) = (/) ) ) |
15 |
13 14
|
ax-mp |
|- ( ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) = (/) <-> dom ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) = (/) ) |
16 |
12 15
|
mpbir |
|- ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) = (/) |
17 |
16
|
uneq2i |
|- ( ( S |` dom S ) u. ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) ) = ( ( S |` dom S ) u. (/) ) |
18 |
3 4 17
|
3eqtri |
|- ( Z |` dom S ) = ( ( S |` dom S ) u. (/) ) |
19 |
1
|
nosupno |
|- ( ( A C_ No /\ A e. _V ) -> S e. No ) |
20 |
19
|
3adant3 |
|- ( ( A C_ No /\ A e. _V /\ B e. _V ) -> S e. No ) |
21 |
|
nofun |
|- ( S e. No -> Fun S ) |
22 |
20 21
|
syl |
|- ( ( A C_ No /\ A e. _V /\ B e. _V ) -> Fun S ) |
23 |
|
funrel |
|- ( Fun S -> Rel S ) |
24 |
|
resdm |
|- ( Rel S -> ( S |` dom S ) = S ) |
25 |
22 23 24
|
3syl |
|- ( ( A C_ No /\ A e. _V /\ B e. _V ) -> ( S |` dom S ) = S ) |
26 |
25
|
uneq1d |
|- ( ( A C_ No /\ A e. _V /\ B e. _V ) -> ( ( S |` dom S ) u. (/) ) = ( S u. (/) ) ) |
27 |
|
un0 |
|- ( S u. (/) ) = S |
28 |
26 27
|
eqtrdi |
|- ( ( A C_ No /\ A e. _V /\ B e. _V ) -> ( ( S |` dom S ) u. (/) ) = S ) |
29 |
18 28
|
syl5eq |
|- ( ( A C_ No /\ A e. _V /\ B e. _V ) -> ( Z |` dom S ) = S ) |