Metamath Proof Explorer


Theorem noetainflem1

Description: Lemma for noeta . Establish that this particular construction gives a surreal. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypotheses noetainflem.1 𝑇 = if ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 , ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
noetainflem.2 𝑊 = ( 𝑇 ∪ ( ( suc ( bday 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) )
Assertion noetainflem1 ( ( 𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V ) → 𝑊 No )

Proof

Step Hyp Ref Expression
1 noetainflem.1 𝑇 = if ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 , ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
2 noetainflem.2 𝑊 = ( 𝑇 ∪ ( ( suc ( bday 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) )
3 1 noinfno ( ( 𝐵 No 𝐵 ∈ V ) → 𝑇 No )
4 3 3adant1 ( ( 𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V ) → 𝑇 No )
5 bdayimaon ( 𝐴 ∈ V → suc ( bday 𝐴 ) ∈ On )
6 5 3ad2ant1 ( ( 𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V ) → suc ( bday 𝐴 ) ∈ On )
7 2oex 2o ∈ V
8 7 prid2 2o ∈ { 1o , 2o }
9 8 noextendseq ( ( 𝑇 No ∧ suc ( bday 𝐴 ) ∈ On ) → ( 𝑇 ∪ ( ( suc ( bday 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) ∈ No )
10 4 6 9 syl2anc ( ( 𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V ) → ( 𝑇 ∪ ( ( suc ( bday 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) ∈ No )
11 2 10 eqeltrid ( ( 𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V ) → 𝑊 No )