Step |
Hyp |
Ref |
Expression |
1 |
|
noetainflem.1 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
noetainflem.2 |
⊢ 𝑊 = ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) |
3 |
1
|
noinfno |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → 𝑇 ∈ No ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → 𝑇 ∈ No ) |
5 |
|
bdayimaon |
⊢ ( 𝐴 ∈ V → suc ∪ ( bday “ 𝐴 ) ∈ On ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → suc ∪ ( bday “ 𝐴 ) ∈ On ) |
7 |
|
2oex |
⊢ 2o ∈ V |
8 |
7
|
prid2 |
⊢ 2o ∈ { 1o , 2o } |
9 |
8
|
noextendseq |
⊢ ( ( 𝑇 ∈ No ∧ suc ∪ ( bday “ 𝐴 ) ∈ On ) → ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) ∈ No ) |
10 |
4 6 9
|
syl2anc |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) ∈ No ) |
11 |
2 10
|
eqeltrid |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → 𝑊 ∈ No ) |