Step |
Hyp |
Ref |
Expression |
1 |
|
noetainflem.1 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
noetainflem.2 |
⊢ 𝑊 = ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) |
3 |
2
|
reseq1i |
⊢ ( 𝑊 ↾ dom 𝑇 ) = ( ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) ↾ dom 𝑇 ) |
4 |
|
resundir |
⊢ ( ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) ↾ dom 𝑇 ) = ( ( 𝑇 ↾ dom 𝑇 ) ∪ ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) ) |
5 |
3 4
|
eqtri |
⊢ ( 𝑊 ↾ dom 𝑇 ) = ( ( 𝑇 ↾ dom 𝑇 ) ∪ ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) ) |
6 |
1
|
noinfno |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → 𝑇 ∈ No ) |
7 |
|
nofun |
⊢ ( 𝑇 ∈ No → Fun 𝑇 ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → Fun 𝑇 ) |
9 |
|
funrel |
⊢ ( Fun 𝑇 → Rel 𝑇 ) |
10 |
|
resdm |
⊢ ( Rel 𝑇 → ( 𝑇 ↾ dom 𝑇 ) = 𝑇 ) |
11 |
8 9 10
|
3syl |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( 𝑇 ↾ dom 𝑇 ) = 𝑇 ) |
12 |
|
dmres |
⊢ dom ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ( dom 𝑇 ∩ dom ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) |
13 |
|
2oex |
⊢ 2o ∈ V |
14 |
13
|
snnz |
⊢ { 2o } ≠ ∅ |
15 |
|
dmxp |
⊢ ( { 2o } ≠ ∅ → dom ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) = ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) ) |
16 |
14 15
|
ax-mp |
⊢ dom ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) = ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) |
17 |
16
|
ineq2i |
⊢ ( dom 𝑇 ∩ dom ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) = ( dom 𝑇 ∩ ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) ) |
18 |
|
disjdif |
⊢ ( dom 𝑇 ∩ ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) ) = ∅ |
19 |
17 18
|
eqtri |
⊢ ( dom 𝑇 ∩ dom ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) = ∅ |
20 |
12 19
|
eqtri |
⊢ dom ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ |
21 |
|
relres |
⊢ Rel ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) |
22 |
|
reldm0 |
⊢ ( Rel ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) → ( ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ ↔ dom ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ ) ) |
23 |
21 22
|
ax-mp |
⊢ ( ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ ↔ dom ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ ) |
24 |
20 23
|
mpbir |
⊢ ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ |
25 |
24
|
a1i |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) = ∅ ) |
26 |
11 25
|
uneq12d |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( ( 𝑇 ↾ dom 𝑇 ) ∪ ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) ) = ( 𝑇 ∪ ∅ ) ) |
27 |
|
un0 |
⊢ ( 𝑇 ∪ ∅ ) = 𝑇 |
28 |
26 27
|
eqtrdi |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( ( 𝑇 ↾ dom 𝑇 ) ∪ ( ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ↾ dom 𝑇 ) ) = 𝑇 ) |
29 |
5 28
|
syl5eq |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( 𝑊 ↾ dom 𝑇 ) = 𝑇 ) |