Step |
Hyp |
Ref |
Expression |
1 |
|
noetainflem.1 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
noetainflem.2 |
⊢ 𝑊 = ( 𝑇 ∪ ( ( suc ∪ ( bday “ 𝐴 ) ∖ dom 𝑇 ) × { 2o } ) ) |
3 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑌 ∈ 𝐵 ) → 𝐵 ⊆ No ) |
4 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑌 ∈ 𝐵 ) → 𝐵 ∈ V ) |
5 |
1 2
|
noetainflem2 |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → ( 𝑊 ↾ dom 𝑇 ) = 𝑇 ) |
6 |
3 4 5
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑌 ∈ 𝐵 ) → ( 𝑊 ↾ dom 𝑇 ) = 𝑇 ) |
7 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
8 |
1
|
noinfbnd1 |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ∧ 𝑌 ∈ 𝐵 ) → 𝑇 <s ( 𝑌 ↾ dom 𝑇 ) ) |
9 |
3 4 7 8
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑌 ∈ 𝐵 ) → 𝑇 <s ( 𝑌 ↾ dom 𝑇 ) ) |
10 |
6 9
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑌 ∈ 𝐵 ) → ( 𝑊 ↾ dom 𝑇 ) <s ( 𝑌 ↾ dom 𝑇 ) ) |
11 |
1 2
|
noetainflem1 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → 𝑊 ∈ No ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑌 ∈ 𝐵 ) → 𝑊 ∈ No ) |
13 |
|
simp2 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → 𝐵 ⊆ No ) |
14 |
13
|
sselda |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ No ) |
15 |
1
|
noinfno |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) → 𝑇 ∈ No ) |
16 |
3 4 15
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑌 ∈ 𝐵 ) → 𝑇 ∈ No ) |
17 |
|
nodmon |
⊢ ( 𝑇 ∈ No → dom 𝑇 ∈ On ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑌 ∈ 𝐵 ) → dom 𝑇 ∈ On ) |
19 |
|
sltres |
⊢ ( ( 𝑊 ∈ No ∧ 𝑌 ∈ No ∧ dom 𝑇 ∈ On ) → ( ( 𝑊 ↾ dom 𝑇 ) <s ( 𝑌 ↾ dom 𝑇 ) → 𝑊 <s 𝑌 ) ) |
20 |
12 14 18 19
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑊 ↾ dom 𝑇 ) <s ( 𝑌 ↾ dom 𝑇 ) → 𝑊 <s 𝑌 ) ) |
21 |
10 20
|
mpd |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ 𝑌 ∈ 𝐵 ) → 𝑊 <s 𝑌 ) |