Step |
Hyp |
Ref |
Expression |
1 |
|
noetainflem.1 |
|- T = if ( E. x e. B A. y e. B -. y . } ) , ( g e. { y | E. u e. B ( y e. dom u /\ A. v e. B ( -. u ( u |` suc y ) = ( v |` suc y ) ) ) } |-> ( iota x E. u e. B ( g e. dom u /\ A. v e. B ( -. u ( u |` suc g ) = ( v |` suc g ) ) /\ ( u ` g ) = x ) ) ) ) |
2 |
|
noetainflem.2 |
|- W = ( T u. ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) ) |
3 |
2
|
reseq1i |
|- ( W |` dom T ) = ( ( T u. ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) ) |` dom T ) |
4 |
|
resundir |
|- ( ( T u. ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) ) |` dom T ) = ( ( T |` dom T ) u. ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) ) |
5 |
3 4
|
eqtri |
|- ( W |` dom T ) = ( ( T |` dom T ) u. ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) ) |
6 |
1
|
noinfno |
|- ( ( B C_ No /\ B e. _V ) -> T e. No ) |
7 |
|
nofun |
|- ( T e. No -> Fun T ) |
8 |
6 7
|
syl |
|- ( ( B C_ No /\ B e. _V ) -> Fun T ) |
9 |
|
funrel |
|- ( Fun T -> Rel T ) |
10 |
|
resdm |
|- ( Rel T -> ( T |` dom T ) = T ) |
11 |
8 9 10
|
3syl |
|- ( ( B C_ No /\ B e. _V ) -> ( T |` dom T ) = T ) |
12 |
|
dmres |
|- dom ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) = ( dom T i^i dom ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) ) |
13 |
|
2oex |
|- 2o e. _V |
14 |
13
|
snnz |
|- { 2o } =/= (/) |
15 |
|
dmxp |
|- ( { 2o } =/= (/) -> dom ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) = ( suc U. ( bday " A ) \ dom T ) ) |
16 |
14 15
|
ax-mp |
|- dom ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) = ( suc U. ( bday " A ) \ dom T ) |
17 |
16
|
ineq2i |
|- ( dom T i^i dom ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) ) = ( dom T i^i ( suc U. ( bday " A ) \ dom T ) ) |
18 |
|
disjdif |
|- ( dom T i^i ( suc U. ( bday " A ) \ dom T ) ) = (/) |
19 |
17 18
|
eqtri |
|- ( dom T i^i dom ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) ) = (/) |
20 |
12 19
|
eqtri |
|- dom ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) = (/) |
21 |
|
relres |
|- Rel ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) |
22 |
|
reldm0 |
|- ( Rel ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) -> ( ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) = (/) <-> dom ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) = (/) ) ) |
23 |
21 22
|
ax-mp |
|- ( ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) = (/) <-> dom ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) = (/) ) |
24 |
20 23
|
mpbir |
|- ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) = (/) |
25 |
24
|
a1i |
|- ( ( B C_ No /\ B e. _V ) -> ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) = (/) ) |
26 |
11 25
|
uneq12d |
|- ( ( B C_ No /\ B e. _V ) -> ( ( T |` dom T ) u. ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) ) = ( T u. (/) ) ) |
27 |
|
un0 |
|- ( T u. (/) ) = T |
28 |
26 27
|
eqtrdi |
|- ( ( B C_ No /\ B e. _V ) -> ( ( T |` dom T ) u. ( ( ( suc U. ( bday " A ) \ dom T ) X. { 2o } ) |` dom T ) ) = T ) |
29 |
5 28
|
syl5eq |
|- ( ( B C_ No /\ B e. _V ) -> ( W |` dom T ) = T ) |