Step |
Hyp |
Ref |
Expression |
1 |
|
nosupbday.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
1
|
nosupno |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → 𝑆 ∈ No ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) → 𝑆 ∈ No ) |
4 |
|
bdayval |
⊢ ( 𝑆 ∈ No → ( bday ‘ 𝑆 ) = dom 𝑆 ) |
5 |
3 4
|
syl |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) → ( bday ‘ 𝑆 ) = dom 𝑆 ) |
6 |
|
iftrue |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) = ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) ) |
7 |
1 6
|
syl5eq |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) ) |
8 |
7
|
dmeqd |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) ) |
9 |
|
2oex |
⊢ 2o ∈ V |
10 |
9
|
dmsnop |
⊢ dom { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } = { dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) } |
11 |
10
|
uneq2i |
⊢ ( dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ dom { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) = ( dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) } ) |
12 |
|
dmun |
⊢ dom ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) = ( dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ dom { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) |
13 |
|
df-suc |
⊢ suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) = ( dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) } ) |
14 |
11 12 13
|
3eqtr4i |
⊢ dom ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) = suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
15 |
8 14
|
eqtrdi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) |
16 |
15
|
adantr |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → dom 𝑆 = suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) |
17 |
|
simprrl |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → 𝑂 ∈ On ) |
18 |
|
eloni |
⊢ ( 𝑂 ∈ On → Ord 𝑂 ) |
19 |
17 18
|
syl |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → Ord 𝑂 ) |
20 |
|
simprll |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → 𝐴 ⊆ No ) |
21 |
|
simpl |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
22 |
|
nomaxmo |
⊢ ( 𝐴 ⊆ No → ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
23 |
22
|
adantr |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
24 |
23
|
adantl |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) → ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
25 |
|
reu5 |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) |
26 |
21 24 25
|
sylanbrc |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) → ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
27 |
26
|
adantrr |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
28 |
|
riotacl |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∈ 𝐴 ) |
29 |
27 28
|
syl |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∈ 𝐴 ) |
30 |
20 29
|
sseldd |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∈ No ) |
31 |
|
bdayval |
⊢ ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∈ No → ( bday ‘ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) = dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) |
32 |
30 31
|
syl |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → ( bday ‘ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) = dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) |
33 |
|
simprrr |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → ( bday “ 𝐴 ) ⊆ 𝑂 ) |
34 |
|
bdayfo |
⊢ bday : No –onto→ On |
35 |
|
fofn |
⊢ ( bday : No –onto→ On → bday Fn No ) |
36 |
34 35
|
ax-mp |
⊢ bday Fn No |
37 |
|
fnfvima |
⊢ ( ( bday Fn No ∧ 𝐴 ⊆ No ∧ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∈ 𝐴 ) → ( bday ‘ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) ∈ ( bday “ 𝐴 ) ) |
38 |
36 20 29 37
|
mp3an2i |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → ( bday ‘ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) ∈ ( bday “ 𝐴 ) ) |
39 |
33 38
|
sseldd |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → ( bday ‘ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ) ∈ 𝑂 ) |
40 |
32 39
|
eqeltrrd |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∈ 𝑂 ) |
41 |
|
ordsucss |
⊢ ( Ord 𝑂 → ( dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∈ 𝑂 → suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ⊆ 𝑂 ) ) |
42 |
19 40 41
|
sylc |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → suc dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ⊆ 𝑂 ) |
43 |
16 42
|
eqsstrd |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → dom 𝑆 ⊆ 𝑂 ) |
44 |
|
iffalse |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
45 |
1 44
|
syl5eq |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
46 |
45
|
dmeqd |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
47 |
|
iotaex |
⊢ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ∈ V |
48 |
|
eqid |
⊢ ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) |
49 |
47 48
|
dmmpti |
⊢ dom ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) = { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } |
50 |
46 49
|
eqtrdi |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) |
51 |
50
|
adantr |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → dom 𝑆 = { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) |
52 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑂 ∈ On ) |
53 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ No ) |
54 |
53
|
ad4ant14 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ No ) |
55 |
|
bdayval |
⊢ ( 𝑢 ∈ No → ( bday ‘ 𝑢 ) = dom 𝑢 ) |
56 |
54 55
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ∧ 𝑢 ∈ 𝐴 ) → ( bday ‘ 𝑢 ) = dom 𝑢 ) |
57 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ∧ 𝑢 ∈ 𝐴 ) → ( bday “ 𝐴 ) ⊆ 𝑂 ) |
58 |
|
fnfvima |
⊢ ( ( bday Fn No ∧ 𝐴 ⊆ No ∧ 𝑢 ∈ 𝐴 ) → ( bday ‘ 𝑢 ) ∈ ( bday “ 𝐴 ) ) |
59 |
36 58
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ No ∧ 𝑢 ∈ 𝐴 ) → ( bday ‘ 𝑢 ) ∈ ( bday “ 𝐴 ) ) |
60 |
59
|
ad4ant14 |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ∧ 𝑢 ∈ 𝐴 ) → ( bday ‘ 𝑢 ) ∈ ( bday “ 𝐴 ) ) |
61 |
57 60
|
sseldd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ∧ 𝑢 ∈ 𝐴 ) → ( bday ‘ 𝑢 ) ∈ 𝑂 ) |
62 |
56 61
|
eqeltrrd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ∧ 𝑢 ∈ 𝐴 ) → dom 𝑢 ∈ 𝑂 ) |
63 |
|
onelss |
⊢ ( 𝑂 ∈ On → ( dom 𝑢 ∈ 𝑂 → dom 𝑢 ⊆ 𝑂 ) ) |
64 |
52 62 63
|
sylc |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ∧ 𝑢 ∈ 𝐴 ) → dom 𝑢 ⊆ 𝑂 ) |
65 |
64
|
sseld |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑦 ∈ dom 𝑢 → 𝑦 ∈ 𝑂 ) ) |
66 |
65
|
adantrd |
⊢ ( ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ∧ 𝑢 ∈ 𝐴 ) → ( ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) → 𝑦 ∈ 𝑂 ) ) |
67 |
66
|
rexlimdva |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) → 𝑦 ∈ 𝑂 ) ) |
68 |
67
|
abssdv |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) → { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ⊆ 𝑂 ) |
69 |
68
|
adantl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ⊆ 𝑂 ) |
70 |
51 69
|
eqsstrd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) ) → dom 𝑆 ⊆ 𝑂 ) |
71 |
43 70
|
pm2.61ian |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) → dom 𝑆 ⊆ 𝑂 ) |
72 |
5 71
|
eqsstrd |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑂 ∈ On ∧ ( bday “ 𝐴 ) ⊆ 𝑂 ) ) → ( bday ‘ 𝑆 ) ⊆ 𝑂 ) |