Step |
Hyp |
Ref |
Expression |
1 |
|
nosupfv.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
iffalse |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
3 |
1 2
|
syl5eq |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
4 |
3
|
fveq1d |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ( 𝑆 ‘ 𝐺 ) = ( ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ‘ 𝐺 ) ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ( 𝑆 ‘ 𝐺 ) = ( ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ‘ 𝐺 ) ) |
6 |
|
simp32 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → 𝐺 ∈ dom 𝑈 ) |
7 |
|
dmeq |
⊢ ( 𝑝 = 𝑈 → dom 𝑝 = dom 𝑈 ) |
8 |
7
|
eleq2d |
⊢ ( 𝑝 = 𝑈 → ( 𝐺 ∈ dom 𝑝 ↔ 𝐺 ∈ dom 𝑈 ) ) |
9 |
|
breq2 |
⊢ ( 𝑝 = 𝑈 → ( 𝑣 <s 𝑝 ↔ 𝑣 <s 𝑈 ) ) |
10 |
9
|
notbid |
⊢ ( 𝑝 = 𝑈 → ( ¬ 𝑣 <s 𝑝 ↔ ¬ 𝑣 <s 𝑈 ) ) |
11 |
|
reseq1 |
⊢ ( 𝑝 = 𝑈 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑈 ↾ suc 𝐺 ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑝 = 𝑈 → ( ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ↔ ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
13 |
10 12
|
imbi12d |
⊢ ( 𝑝 = 𝑈 → ( ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ↔ ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑝 = 𝑈 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ↔ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
15 |
8 14
|
anbi12d |
⊢ ( 𝑝 = 𝑈 → ( ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ↔ ( 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) ) |
16 |
15
|
rspcev |
⊢ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ∃ 𝑝 ∈ 𝐴 ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
17 |
16
|
3impb |
⊢ ( ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∃ 𝑝 ∈ 𝐴 ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
18 |
|
dmeq |
⊢ ( 𝑢 = 𝑝 → dom 𝑢 = dom 𝑝 ) |
19 |
18
|
eleq2d |
⊢ ( 𝑢 = 𝑝 → ( 𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑝 ) ) |
20 |
|
breq2 |
⊢ ( 𝑢 = 𝑝 → ( 𝑣 <s 𝑢 ↔ 𝑣 <s 𝑝 ) ) |
21 |
20
|
notbid |
⊢ ( 𝑢 = 𝑝 → ( ¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝 ) ) |
22 |
|
reseq1 |
⊢ ( 𝑢 = 𝑝 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑝 ↾ suc 𝐺 ) ) |
23 |
22
|
eqeq1d |
⊢ ( 𝑢 = 𝑝 → ( ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ↔ ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
24 |
21 23
|
imbi12d |
⊢ ( 𝑢 = 𝑝 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ↔ ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑢 = 𝑝 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ↔ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
26 |
19 25
|
anbi12d |
⊢ ( 𝑢 = 𝑝 → ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ↔ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) ) |
27 |
26
|
cbvrexvw |
⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ↔ ∃ 𝑝 ∈ 𝐴 ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
28 |
17 27
|
sylibr |
⊢ ( ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
29 |
28
|
3ad2ant3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
30 |
|
eleq1 |
⊢ ( 𝑦 = 𝐺 → ( 𝑦 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑢 ) ) |
31 |
|
suceq |
⊢ ( 𝑦 = 𝐺 → suc 𝑦 = suc 𝐺 ) |
32 |
31
|
reseq2d |
⊢ ( 𝑦 = 𝐺 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑢 ↾ suc 𝐺 ) ) |
33 |
31
|
reseq2d |
⊢ ( 𝑦 = 𝐺 → ( 𝑣 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝐺 ) ) |
34 |
32 33
|
eqeq12d |
⊢ ( 𝑦 = 𝐺 → ( ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ↔ ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
35 |
34
|
imbi2d |
⊢ ( 𝑦 = 𝐺 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
36 |
35
|
ralbidv |
⊢ ( 𝑦 = 𝐺 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ↔ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
37 |
30 36
|
anbi12d |
⊢ ( 𝑦 = 𝐺 → ( ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) ) |
38 |
37
|
rexbidv |
⊢ ( 𝑦 = 𝐺 → ( ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) ) |
39 |
6 29 38
|
elabd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → 𝐺 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ) |
40 |
|
eleq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑢 ) ) |
41 |
|
suceq |
⊢ ( 𝑔 = 𝐺 → suc 𝑔 = suc 𝐺 ) |
42 |
41
|
reseq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑢 ↾ suc 𝐺 ) ) |
43 |
41
|
reseq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑣 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝐺 ) ) |
44 |
42 43
|
eqeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ↔ ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
45 |
44
|
imbi2d |
⊢ ( 𝑔 = 𝐺 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ↔ ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
46 |
45
|
ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ↔ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
47 |
|
fveqeq2 |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑢 ‘ 𝑔 ) = 𝑥 ↔ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
48 |
40 46 47
|
3anbi123d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ↔ ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ) |
49 |
48
|
rexbidv |
⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ) |
50 |
49
|
iotabidv |
⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) = ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ) |
51 |
|
eqid |
⊢ ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) = ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) |
52 |
|
iotaex |
⊢ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ∈ V |
53 |
50 51 52
|
fvmpt |
⊢ ( 𝐺 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } → ( ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ‘ 𝐺 ) = ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ) |
54 |
39 53
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ( ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ‘ 𝐺 ) = ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ) |
55 |
|
simp1 |
⊢ ( ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → 𝑈 ∈ 𝐴 ) |
56 |
|
simp2 |
⊢ ( ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → 𝐺 ∈ dom 𝑈 ) |
57 |
|
simp3 |
⊢ ( ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
58 |
|
eqidd |
⊢ ( ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ( 𝑈 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) |
59 |
|
dmeq |
⊢ ( 𝑢 = 𝑈 → dom 𝑢 = dom 𝑈 ) |
60 |
59
|
eleq2d |
⊢ ( 𝑢 = 𝑈 → ( 𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑈 ) ) |
61 |
|
breq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝑣 <s 𝑢 ↔ 𝑣 <s 𝑈 ) ) |
62 |
61
|
notbid |
⊢ ( 𝑢 = 𝑈 → ( ¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑈 ) ) |
63 |
|
reseq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑈 ↾ suc 𝐺 ) ) |
64 |
63
|
eqeq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ↔ ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
65 |
62 64
|
imbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ↔ ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
66 |
65
|
ralbidv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ↔ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
67 |
|
fveq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) |
68 |
67
|
eqeq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ↔ ( 𝑈 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) |
69 |
60 66 68
|
3anbi123d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ↔ ( 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑈 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) ) |
70 |
69
|
rspcev |
⊢ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑈 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) → ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) |
71 |
55 56 57 58 70
|
syl13anc |
⊢ ( ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) |
72 |
71
|
3ad2ant3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) |
73 |
|
fvex |
⊢ ( 𝑈 ‘ 𝐺 ) ∈ V |
74 |
|
eqid |
⊢ ( 𝑢 ‘ 𝐺 ) = ( 𝑢 ‘ 𝐺 ) |
75 |
|
fvex |
⊢ ( 𝑢 ‘ 𝐺 ) ∈ V |
76 |
|
eqeq2 |
⊢ ( 𝑥 = ( 𝑢 ‘ 𝐺 ) → ( ( 𝑢 ‘ 𝐺 ) = 𝑥 ↔ ( 𝑢 ‘ 𝐺 ) = ( 𝑢 ‘ 𝐺 ) ) ) |
77 |
76
|
3anbi3d |
⊢ ( 𝑥 = ( 𝑢 ‘ 𝐺 ) → ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑢 ‘ 𝐺 ) ) ) ) |
78 |
75 77
|
spcev |
⊢ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑢 ‘ 𝐺 ) ) → ∃ 𝑥 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
79 |
74 78
|
mp3an3 |
⊢ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∃ 𝑥 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
80 |
79
|
reximi |
⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
81 |
|
rexcom4 |
⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ∃ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
82 |
80 81
|
sylib |
⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∃ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
83 |
28 82
|
syl |
⊢ ( ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) → ∃ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
84 |
83
|
3ad2ant3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ∃ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
85 |
|
nosupprefixmo |
⊢ ( 𝐴 ⊆ No → ∃* 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
86 |
85
|
adantr |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → ∃* 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
87 |
86
|
3ad2ant2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ∃* 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
88 |
|
df-eu |
⊢ ( ∃! 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ( ∃ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ∃* 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) ) |
89 |
84 87 88
|
sylanbrc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ∃! 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |
90 |
|
eqeq2 |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝐺 ) → ( ( 𝑢 ‘ 𝐺 ) = 𝑥 ↔ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) |
91 |
90
|
3anbi3d |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝐺 ) → ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) ) |
92 |
91
|
rexbidv |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝐺 ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ) ) |
93 |
92
|
iota2 |
⊢ ( ( ( 𝑈 ‘ 𝐺 ) ∈ V ∧ ∃! 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ↔ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) = ( 𝑈 ‘ 𝐺 ) ) ) |
94 |
73 89 93
|
sylancr |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) ↔ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) = ( 𝑈 ‘ 𝐺 ) ) ) |
95 |
72 94
|
mpbid |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) = ( 𝑈 ‘ 𝐺 ) ) |
96 |
5 54 95
|
3eqtrd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝐺 ∈ dom 𝑈 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑈 → ( 𝑈 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) → ( 𝑆 ‘ 𝐺 ) = ( 𝑈 ‘ 𝐺 ) ) |